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Abstract 

 
Experimental design, hypothesis-testing, and model-building in the current data-rich 
environment require the biologist to collect, evaluate and integrate large amounts of information 
of many disparate kinds. Developing a unified framework for the representation and conceptual 
integration of biological data and processes is a major challenge in bioinformatics because of the 
variety of available data and the different levels of detail at which biological processes can be 
considered. We have developed the HyBrow (Hypothesis Browser) system as a prototype 
bioinformatics tool for designing hypotheses and evaluating them for consistency with existing 
knowledge. HyBrow consists of a modeling framework with the ability to accommodate diverse 
biological information sources, an event-based ontology for representing biological processes at 
different levels of detail, a database to query information in the ontology, and programs to 
perform hypothesis design and evaluation. We demonstrate the HyBrow prototype using the 
galactose gene network in Saccharomyces cerevisiae as our test system, and evaluate alternative 
hypotheses for consistency with stored information. 

 

# These two authors contributed equally to this work. 

* Corresponding author: nigam@psu.edu 
211 Wartik Labs, 
University Park 
PA – 16801 USA. 
Ph: (814) 863 5720; Fax: (814) 863 1357 
 
Availability: www.hybrow.org 



Introduction 
To expand understanding of a biological system, an experimentalist 1) formulates 

hypotheses about relationships that exist within that system, 2) gathers information from various 
repositories about the components of the system, 3) evaluates the hypotheses to assess whether 
they are supported or contradicted by this information, 4) revises hypotheses as needed, 5) 
perturbs the system in informative ways, and 6) integrates all available information to deepen 
understanding of how the system works. Understanding grows as hypotheses are accumulated.  

Current investigations of signal transduction and gene regulation generate large volumes 
of data, making it increasingly difficult to assemble and organize all of the information needed to 
test hypotheses. To complicate matters, the various kinds of data reside in a wide array of 
repositories and are stored in different formats. To help biologists make effective use of 
increasing amounts of diverse data, we are developing the HyBrow (Hypothesis Browser) system 
to aid in the hypothesis formulation and evaluation cycle.  

Most bioinformatics tools are designed to perform specific analytical functions. These 
tools carry out tasks such as identifying patterns, categorizing information, and probing data 
sources for similarities. However, information synthesis[1] has remained solely the purview of the 
biologist. Before designing a system to support the tasks of formulating and evaluating 
hypotheses for consistency with prior knowledge, we must address several issues. We must 
specify a representation for hypotheses that is both machine-understandable and accessible to the 
experimental biologist. We must choose a conceptual model and methods for storing existing 
information about the biological system in that model. Finally, we must decide on a framework 
that supports the evaluation of hypotheses with respect to the stored information.  

Organisms are (and contain) complex systems which are incompletely understood. Such 
systems are more readily represented by describing the system’s dynamics in terms of the events 
that occur in the system than by trying to write differential equations for all of the system’s 
constituent reactions[2]. In a previous publication, we described the development of a framework 
for conceptualizing biological processes in terms of events[3]. Biological events are changes in a 
biological system for which we can obtain experimental evidence. In order to represent 
hypotheses about a biological process in a machine-understandable format, it is necessary to 
create a vocabulary of objects (agents) and processes, and define the relationships in which these 
entities can participate. We refer to this vocabulary as the hypothesis ontology and in our current 
work we construct and populate such an ontology for a simple test system. We describe 
biological events by naming the agents from the ontology (such as proteins and nucleic acids) 
and the processes (such as “binds”) that connect them. We use the term hypothesis event to 
represent an abstract biological event. Thus, an hypothesis event consists of an acting agent (a 
“subject,” such as a protein), a relationship (a “verb,” such as induce, repress …), a target agent 
(an “object,” a gene, protein…), the experimental and cellular contexts in which the event takes 
place, and a set of associated conditions (such as the presence or absence of other agents) which 
can accompany the event. This event-based framework[3], together with our hypothesis ontology, 
allows us to represent hypotheses in a formal language that specifies the time and context-
dependent relationships among the system’s objects and processes[3][4]. 

HyBrow’s event-based framework includes methods to evaluate such formal language 
hypotheses for internal consistency and for agreement with existing knowledge[3]. Consistency of 
an hypothesis with observed data and prior knowledge is evaluated by applying constraints and 
rules. Constraints specify classes of forbidden events. Rules are the operations performed upon 
available information in order to enforce the constraints. Rules generate judgments of support or 



conflict, depending upon whether or not an assertion is supported by existing knowledge. The 
framework also includes neighborhood functions to establish similarity between hypotheses. 
These facilitate hypothesis revision through the automatic generation of “neighboring” 
hypotheses that are variants of an original hypothesis. Neighborhood functions use biologically 
acceptable notions to generate sets of variant events for events that conflict with existing data or 
prior knowledge. We examine these variants to find more fitting events and replace conflicted 
events with superior variants to produce hypotheses that better fit the stored information.  

HyBrow’s event-based framework makes it possible for the biologist to deal strictly with 
experimental evidence and to avoid the unintended assertions that are common artifacts of 
statistical and equation-based approaches. In HyBrow’s framework, hypotheses and evaluation 
methods are directly compatible with the way information is conceptualized by biologists, 
making it easier to tap the expertise of experienced biologists. Finally, and most importantly, 
HyBrow’s framework makes it possible to bring together many kinds of data and information in 
a unified formal language. The inability to combine information sources has been a stumbling 
block for computational models of biological systems, leading current information integration 
efforts to focus on only one or two categories of information[5, 6]. 

In this paper, we demonstrate HyBrow’s information synthesis capability using the 
galactose metabolic and regulatory network, which we chose because abundant data and 
information of many different types are publicly available for this system[7]. We designed a small 
hypothesis ontology appropriate for the GAL system. We specified the formal grammar that 
describes how to combine terms from the ontology into hypotheses. We designed a database to 
store yeast GAL data structured in the ontology and developed hypothesis composition, 
visualization and evaluation software.  

To test the HyBrow prototype, we evaluated and ranked hypotheses about the GAL 
system. During evaluation, HyBrow assayed all stored data for conflicting or supporting 
evidence for each statement in each hypothesis. HyBrow modified hypotheses which contained 
errors to generate variants with fewer flaws. Finally, HyBrow combined the resulting 
determinations of conflict and support to generate evaluations and rankings for all of the original 
and variant hypotheses. 

 
Implementation 

Hypothesis ontology. Common ontologies for biological objects and processes[8, 9] are 
being developed to support the intercommunication of diverse databases as well as enable 
automated annotation and extraction of information from the literature[10, 11]. Ontologies also 
provide a foundation for the construction of higher level models of biological systems[12, 13]. 
Models vary from abstract Boolean[14] and Bayesian networks[5] to highly specific[15] and 
quantitative models[16]. Currently, most databases do not store information in an explicit 
ontology that facilitates modeling, and groups that design ontologies[12, 13] do not store all 
relevant data structured in those ontologies. Hence, efforts aimed at integrating diverse 
information sources need to choose or design a representation scheme and convert existing data 
to that representation. Although specialized ontologies exist[12, 17], there is a need for an ontology 
that allows users to represent biological processes in an event-based manner. Such an ontology 
should be compatible with existing ones so that hierarchical relationships can be made between 
terms in existing ontologies [12, 17] and this “hypothesis ontology.”  

We used Protégé[18] to design a small hypothesis ontology for representing GAL system 
information in HyBrow’s event-based conceptual framework[3]. For guidance, we relied upon the 



 

Fig.1 An overview of the ontology 
used to represent data in an event-
centered way. ‘Operators’ are the 
relationships that can exist between 
agents. 

principles used to design the Rzhetsky and the Bioprocess ontologies[12, 13]. Our ontology (Fig.1) 
accommodates currently available literature data, extracted primarily from YPD[19] at a coarse 
level of resolution. An event consists of an acting agent (the “subject,” such as gene, RNA, 
protein), a target agent (the “object,” such as a gene, protein, complex), a relationship (the 
“verb,” such as induce, repress, bind), a context in which the event takes place, and an optional 
set of associated conditions (such as the presence or absence of other agents) which accompany 
the event. The construction of events from elements of the ontology, event sets from events, and 
hypotheses from event sets is governed by a context-free grammar. Events that occur in the same 
context are combined to form event sets and an hypothesis consists of event sets linked by logical 
and temporal operators. An hypothesis must contain at least one event set, which must contain at 
least one event. Please refer to www.hybrow.org for a formal specification of this grammar.  

Contexts specify where events occur in the cell and under what genetic conditions they 
occur. Our contexts are derived from established ontologies. For example, terms for specifying 

physical locations in the cell come from the cellular component 
division of the Gene Ontology. We currently support genes, 
proteins, mRNA, small molecules, and complexes of proteins, 
small molecules, and mRNA as agents in our prototype. We 
define three main categories of relationships: logical (e.g. 
induce), biochemical (e.g. phosphorylate) and physical (e.g. 
bind). The key design principle is that the ontology describes a 
regulatory system in an event-based way consistent with our 
evaluation framework. Our current hypothesis ontology allows 
representation of events such as: ‘Gal4p binds to the promoter of 
the gal1 gene in the presence of galactose in wild type S. 
cerevisiae’. Depending on the resolution of the ontology, this 
approach can represent anything from simple protein 
phosphorylation to the entire cell cycle[20] . Formal presentation 
of the complete ontology is available at www.hybrow.org 

Inference rules and constraints. We have defined 
constraints and the rules that determine whether or not a 
constraint is satisfied for each relationship expressible with 
terms from our ontology. We define several categories of 
constraints. Ontology constraints determine what agents can 
participate in which types of biological relationships. For 
example, a gene cannot transport a gene, but a protein can 
transport a small molecule or another protein. Data constraints 
determine what data values are valid for a particular relationship. 

For example, for the relationship ‘protein A binds to the promoter of gene B’, it is acceptable for 
protein A to be annotated as localized in the nucleus or cytoplasm but not on the cell membrane. 
Existence constraints require an agent’s presence before it can enter a relationship. For example, 
a protein cannot perform its function when its gene has been deleted. Temporal constraints 
govern the transmission of modifications made to an agent by previous events. For example, 
event ‘X phosphorylates Y’ implies that in all subsequent events Y is phosphorylated (unless a 
dephosphorylation event occurs). 

 Each rule has divisions that correspond to the different constraints that exist in HyBrow. 
The first division deals with ontology constraints, the second, with constraints on annotation data 



in Gene Ontology (GO)[9] format, the third deals with literature-extracted information structured 
in the ontology, and the fourth with constraints on the specific data type(s) for a relationship, 
such as promoter sequence in the case of the Binds to promoter relationship. For each constraint 
that is violated in any division, the event is assigned a ‘conflict.’ For each constraint that is 
satisfied, the event is assigned a ‘support’. If a constraint is neither violated nor supported, a 
‘cannot comment’ is assigned. Divisions 1, 2 and 3 can be generalized because they have a 
common structure for different relationships, and the operations to be performed on the data are 
very similar. Division 4 is very specific because of the different ways in which different data 
types for each relationship must be used. There are additional general divisions that enforce 
existence and temporal constraints. For example, the rule for protein A binds to promoter of gene 
B has the following divisions: 1) check if A is a protein or a protein-complex and if B is a gene; 
2) check whether protein A is annotated a) to have the molecular function of a transcriptional 
activator or repressor, b) to be involved in the biological process of transcriptional regulation and 
c) to have a nuclear localization; 3) determine whether the literature reports the postulated event; 
4) search the promoter of gene B for a binding site for protein A; 5) ensure that the event is not 
postulated in a genetic context where the gene for protein A is knocked out. 

Rules are coded in Perl as hierarchical function libraries to keep the rule set extensible 
and flexible. Most of the constraints enforced by the generalized divisions are stored in database 
tables which are queried at run time, allowing flexibility for changing the stringency of the 
constraints. A more detailed description of the rule library is provided at www.hybrow.org 

Database and information gathering. At the heart of HyBrow is the idea that disparate 
kinds of information can be represented in a unified formal language. Biological information 
residing in the published literature and electronic databases is expanding at an accelerating rate. 
Retrieving information and translating it into our ontology presents several problems because the 
information is in different repositories and in different storage formats. Further, only a fraction of 
the published literature is available electronically. The problem of automating extraction of 
information from the literature is being addressed by a number of research groups, but is far from 
solved[12, 21, 22]. The most promising approach appears to be MedScan[11], which can parse 
literature abstracts to identify ‘biological events’. But information extraction is still largely 
manual, practiced by annotators who read papers for relevant concepts and information. 

In this work, we adopted different approaches to gather and structure data in our 
ontology. For data with standardized representation formats, we designed user agents to access 
the existing public repositories and retrieve desired information. For example, we designed a 
user-agent to retrieve promoter sequences from the S. cerevisiae Promoter Database[23]. In most 
cases, we were able to access well-annotated information from the Saccharomyces Genome 
Database[24] directly. We used YPD[19] to access curated literature information about S. 
cerevisiae genes and proteins. We designed a form-based layout for gathering biological 
information from YPD reports and filled in predefined table fields compatible with the ontology 
from specific fields of the YPD report. This process is easily automated if direct access to 
database tables is obtained and can be extended to frame-based ‘loading forms’ like the EcoCyc 
database[25]. For quantitative data, such as that from microarray expression profiling experiments, 
we converted the data to our table format using custom Perl scripts. If microarray data are 
structured in the MAGE object model,[26] this task is more straight-forward. 

We designed a MySQL database and mapped our ontology onto the database for easy 
extension as our ontology evolved. We created a table in the database for each class in the 
ontology, at the finest level of resolution. The table has fields for properties, called ‘slots’ and 



 

Fig. 2 Screen shots of the visual and widget interface used to construct hypotheses. 

Fig.3 The visual or the widget interface is used to design 
hypotheses, which are sent to the server via a browser. The 
hypothesis parser is the entry point for the system and it uses 
the event handler, which manages the event library, ranking, 
justification and event neighborhood generation. The database 
stores the different data structured into ‘events’. 
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‘facets’ in the ontology, of the relevant class. This creates more tables than would be present in a 
well-normalized relational database. However, a prototyping effort requires the backend to be 
easily modified in response to changes in the ontology. The backend also contains tables to store 
constraints used during evaluation. A detailed database schema is found at www.hybrow.org 

User interfaces. An important feature of HyBrow is that it is easy for the user to 
construct a machine-
readable formal 
language hypothesis. 
We have created two 
interfaces for this 
purpose: a visual 
interface (Fig.2 left 
panel) and a widget 
interface (Fig. 2 right 
panel). Our visual 

interface allows users to construct hypotheses using a visual notation constructed in accordance 
with proposed conventions[27]. This interface allows users to draw diagrams which are then 
automatically translated into hypotheses. The widget interface allows the user to write 
hypotheses in English-like “sentences” constructed using subject/verb/object selection menus. A 
user can construct portions of an hypothesis using different interfaces and then combine them. 
Details on how to use the tools are provided at www.hybrow.org. Hypotheses are saved to local 
files and then submitted for evaluation via the web. 

The hypothesis evaluation process. The hypothesis evaluation process is illustrated 
diagrammatically in Fig. 3. When HyBrow receives an hypothesis, it checks the connections 
between events and event sets for conformity with the hypothesis grammar. If the hypothesis 
passes these tests for syntax, each event is then checked for validity using the appropriate rule for 
the relationship proposed in the event. For each event, a support, conflict or cannot comment 

result corresponding to each of the four 
divisions of the inference rules is 
returned. Finally, the support and 
conflict calls are tallied based upon the 
logical structure of the hypothesis. 
Each ‘and’ between event sets leads to 
the inclusion of results from both sets 
in the final tally. For each ‘or’ 
connection, the ‘better’ set is chosen 
using a hierarchical set of rules. 
[Sample rules: 1) an event set with 
conflicts it is better than an event set 
with more conflicts and worse than one 
with fewer conflicts. 2) An event set 

for which all events have at least some support is better than an event set for which at least one 
event is not supported. 3) If one event set's support is a strict superset of another event set's 
support, the superset is superior., …] We apply these rules sequentially until one of the rules 
returns a clear decision.  
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Fig. 4.  Screen shot of the result 
page: See text for further 
description 

A. Representation of 
an hypothesis in 
terms of events (ev = 
event) 

B. Holding the mouse on a 
neighboring hypothesis (b1) shows 
what event was replaced to create it 

For each event, the hypothesis evaluation process finds all conflicts with existing 
knowledge and indexes them, along with their sources. These are reported to the user to allow 
the user to identify specific problems with the hypothesis and the conflicting data source. For 
each event that has a conflict, a set of variant events is generated using biologically motivated 
heuristics, such as replacing the acting agent with agents that share a sequence similarity or share 
a similar cellular localization with the original agent. Neighboring hypotheses that share the 
logical structure of the original are generated by replacing conflicting events with the best variant 
events. These neighboring hypotheses are then evaluated, and if a better (more supported, less 
conflicted) hypothesis is found, it is presented to the user. 

After evaluation, the user is shown 1) the support and conflict totals, 2) the least 
conflicted, most supported event sets that fit the logical structure of the hypothesis, 3) a support-
conflict scatter plot of neighboring hypotheses automatically generated from the user submitted 

hypothesis, and 4) a 
list of all events that 
had conflicts, the 
data that triggered 
the conflicts, an 
explanation of why 
the rules interpret 
that data as a 
conflict, and a 
reference to the 
original article or 
data source. The 
results pages (Fig. 
4) allow a user to 
gauge the ‘fitness’ 
of his/her 
hypothesis in the 
light of all stored 
data. Iterative 
refinement of the 
hypothesis allows 
the user to reconcile 

all existing data into a single coherent representation whose level of detail depends on the 
resolution of the ontology used for constructing hypotheses.  

Test runs with sample hypotheses. In order to test the prototype, we composed 
hypotheses about the GAL system and ranked them. The GAL system consists of genes that 
transport and metabolize galactose and the regulatory network that controls whether the pathway 
is on or off[28]. The process involves three types of proteins: a) a permease (Gal2p) that transports 
galactose (encoded by gal2 gene). b) proteins that utilize intracellular galactose; galactokinase 
(encoded by gal1), uridylyltransferase (encoded by gal7), epimerase (encoded by gal10), and 
phosphoglucomutase (encoded by gal5); and c) the regulatory proteins Gal3p, Gal4p and Gal80p, 
which exert transcriptional control over the genes encoding the transporter, the enzymes, and to 
some extent, their own genes[7]. HyBrow successfully identified the hypothesis that best 
explained the current understanding about GAL system regulation[7, 28]. For 6 of the 7 events that 



had conflicts, HyBrow was also able to successfully suggest corrections that increased agreement 
with stored information. All hypotheses used and explanations of their evaluations can be found 
at www.hybrow.org.  

Here we describe the evaluation of a simple illustrative hypothesis: “Gal2p transports 
galactose into the cell at the cell membrane. In the cytoplasm, galactose activates Gal3p.  Gal3p 
binds to the promoter of gal1 gene and induces its transcription in the presence of galactose”. 
This hypothesis was decomposed into events as shown in Fig.4A. On evaluation, HyBrow 
reported support from literature and GO annotation for event number 0 (ev0), support from 
literature for ev1, support from ontology constraints and annotation for ev2 and support from the 
ontology, literature and data divisions for ev3. It reported a conflict for ev3 (which is marked in 
red) from the annotation rule division because Gal3p is annotated to be primarily in the 
cytoplasm[24]. HyBrow then searched for variant events. For ev3 it found an event (Gal4p binds 
to promoter of gal1) with higher support and for ev4 it found the more meaningful event (Gal4p 
induces gal1 in nucleus in wt in presence of galactose) with the same support but no conflict. 
These events were inserted in place of the original events to create a neighboring hypothesis that 
is better than the original hypothesis (Fig.4B, C).  

When a submitted event contains a perturbation, such as the deletion of a gene, HyBrow 
identifies the agents disabled because of the perturbation and infers a conflict with events that 
depend on those agents. For example, if the submitted event is: “Gal3p induce gal1 in nucleus in 
gal3-K/O” HyBrow reports a conflict. (The event “Gal3p not induces gal1 in nucleus in gal3-
K/O” gets support). Some of the inferences suggested by HyBrow are obvious for the small GAL 
system, but HyBrow’s ability to automate the process offers a substantial advantage for systems 
containing large numbers of genes and proteins.  

 
Discussion 

HyBrow supports the construction, “proofreading,” and evaluation of hypotheses 
expressed in familiar diagram or intuitive text-based formats to aid in synthesizing data into 
working models. HyBrow’s methodology is evaluation-based. Thus, unlike systems that 
construct statistical or equation-based models, HyBrow is able to provide explicit reasons (and 
references) for its output. However, HyBrow does not force the user to accept all of the data, nor 
does it judge the validity of stored information. Rather, it gives the user links to the exact source 
of each conflict, leaving it up the user to judge the relative merits of information sources. The 
user can choose to ignore conflicts from data sources deemed unreliable 

HyBrow differs fundamentally from existing efforts such as EcoCyc, modeling biological 
processes as “workflows” and Genome Knowledgebase (GKB). EcoCyc is designed using an 
explicit ontology for biological function and facilitates functional querying. However, it lacks the 
notion of an hypothesis or a formal framework to evaluate and rank alternative statements about 
a biological process[29]. Modeling of biological processes as “workflows” by Altman’s group 
includes some of HyBrow’s features, but the underlying conceptual model (which uses hybrid 
Petri nets) does not support hypothesis neighborhoods and the analysis of models has to be done 
manually[13]. GKB is an effort to structure biological knowledge in an event-centered data 
model[20]. It is not a modeling framework by itself, but serves as a public source of structured 
data which efforts like ours can use. 

In our test runs, HyBrow identified the least conflicted hypothesis accurately and 
suggested valid ‘corrections’ for events with conflicts. We believe that we can build upon this 
success and plan to extend and strengthen HyBrow in several ways. Currently, improvements to 



hypotheses are suggested using neighboring events generated using simple heuristics, while our 
conceptual framework supports neighborhood functions that create similar event sets from a 
given event set[3]. Extending HyBrow to use neighborhoods of event sets as well as of events 
requires new evaluation routines to track all of the biochemical and other modifications that an 
event set generates and to ensure that the neighboring event sets satisfy them. In future work, we 
will explore biological notions of similarity between event sets and modify our neighborhood 
functions and evaluation routines accordingly. The current rule library contains rules for 
‘extrapolations’ in the presence of perturbations such as gene knock-outs and constitutive over-
expression. In the future, we will include extrapolations for more categories of perturbations. Our 
current implementation can only propagate temporal constraints about the presence or absence of 
biochemical modifications. We intend to propagate constraints about activation/inhibition and 
induction/repression in an attempt to model how an event affects down-stream agents. To that 
end, we will extend the current ontology to include ‘modification state’ and ‘activation state’ 
descriptors for agents; events will then be able to modify these state descriptors. Finally, 
HyBrow can identify events that are frequently specified, but for which evaluation was not 
possible. Identifying such events will allow HyBrow to aid experiment design. For instance, if 
many users include an event in their hypotheses and there is no experimental evidence for it, 
HyBrow can indicate a need to obtain such data.  

 
Conclusion and Summary 

Our implementation of HyBrow for the GAL system demonstrates that ontology driven, 
event-based modeling of biological processes is feasible and that structuring data in HyBrow’s 
event-based framework facilitates computer-aided hypothesis evaluation. HyBrow can 
accommodate both more data and more types of data as they become available. Moreover, its 
constraints can be elaborated as understanding about the biological system grows. We believe 
that the approach we have developed for this HyBrow prototype can significantly inform 
experimentation by integrating large amounts of information for the evaluation of hypotheses.  
 

Bibliography 
 

1. Kuchinsky, A., et al. Biological Storytelling: a software tool for biological information 
organization based upon narrative structure. in Advanced Visual Interfaces. 2002. 
Trento, Italy. 

2. Ho, Y.C., Special Issue on Discrete Event Dynamical Systems: Editorial. Proc IEEE, 
1989. 77(1): p. 24-38. 

3. Racunas, S.A., et al. A Contradiction-Based Framework for Testing Gene Regulation 
Hypotheses. in IEEE Bioinformatics. 2003. Stanford University, Palo Alto, California: 
IEEE Computer Society. 

4. Sudkamp, T.A., Languages and machines. 1988, Reading: Addison-Wesley. 
5. Hartemink, A.J., et al., Using graphical models and genomic expression data to 

statistically validate models of genetic regulatory networks. Pac Symp Biocomput, 2001: 
p. 422-33. 

6. Segal, E., et al., Discovering molecular pathways from protein interaction and gene 
expression data. Bioinformatics, 2003. 19(90001): p. 264i-272. 

7. Ideker, T., et al., Integrated genomic and proteomic analyses of a systematically 
perturbed metabolic network. Science, 2001. 292(5518): p. 929-34. 



8. Schulze-Kremer, S., Ontologies for molecular biology. Pac Symp Biocomput, 1998: p. 
695-706. 

9. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene 
Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 

10. Fleischmann, W., et al., A novel method for automatic functional annotation of proteins. 
Bioinformatics, 1999. 15(3): p. 228-33. 

11. Novichkova, S., et al., MedScan, a natural language processing engine for MEDLINE 
abstracts. Bioinformatics, 2003. 19(13): p. 1699-1706. 

12. Rzhetsky, A., et al., A knowledge model for analysis and simulation of regulatory 
networks. Bioinformatics, 2000. 16(12): p. 1120-8. 

13. Peleg, M., et al., Modelling biological processes using workflow and Petri Net models. 
Bioinformatics, 2002. 18(6): p. 825-37. 

14. Akutsu, T., et al., Algorithms for identifying Boolean networks and related biological 
networks based on matrix multiplication and fingerprint function. J Comput Biol, 2000. 
7(3-4): p. 331-43. 

15. McAdams, H.H., et al., Simulation of prokaryotic genetic circuits. Annu Rev Biophys 
Biomol Struct, 1998. 27: p. 199-224. 

16. Sveiczer, A., et al., Modeling the fission yeast cell cycle: quantized cycle times in wee1- 
cdc25Delta mutant cells. Proc. Natl. Acad. Sci. USA, 2000. 97(14): p. 7865-7870. 

17. Karp, P.D., An ontology for biological function based on molecular interactions. 
Bioinformatics, 2000. 16(3): p. 269-85. 

18. Crubézy, M., et al., Protege 2000. 2003, Stanford University: Palo Alto. 
19. Proteome, Yeast Proteome Database. 2001, Proteome. 
20. Genome Knowledge Base. 2003, Cold Spring Harbor Laboratory, The European 

Bioinformatics Institute, and The Gene Ontology Consortium. 
21. Andrade, M.A., et al., Automated extraction of information in molecular biology. FEBS 

Lett, 2000. 476(1-2): p. 12-7. 
22. IBM, Discovery Link. 2002, IBM Corporation. 
23. Zhu, J., et al., SCPD: a promoter database of the yeast Saccharomyces cerevisiae. 

Bioinformatics, 1999. 15(7-8): p. 607-11. 
24. Cherry, J.M., et al., SGD: Saccharomyces Genome Database. Nucleic Acids Res, 1998. 

26(1): p. 73-9. 
25. Karp, P.D., et al., Ecocyc the resource and the lessons learned, in Bioinformatics 

Databases and Systems, S. Letovsky, Editor. 1999, Kluwer Academic Publishers: New 
York. p. 47-62. 

26. Spellman, P.T., et al., Design and implementation of microarray gene expression markup 
language (MAGE-ML). Genome Biol, 2002. 3(9): p. RESEARCH0046. 

27. Cook, D.L., et al., A basis for a visual language for describing, archiving and analyzing 
functional models of complex biological systems. Genome Biol, 2001. 2(4). 

28. Lohr, D., et al., Transcriptional regulation in the yeast GAL gene family: a complex 
genetic network.PG - 777-87. Faseb J, 1995. 9(9). 

29. Karp, P.D., et al., The EcoCyc Database. Nucleic Acids Res, 2002. 30(1): p. 56-8. 


