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A general scheme is developed for estimating the effective constitutive properties
of a randomly disordered elastic solid medium. The presented methodology, already
known in electromagnetics and acoustics, is based on renormalizing the conventional
equations of motion. The resulting equations lend themselves to an approximate
averaging procedure, which holds for strong fluctuations in the constitutive prop-
erties of the disordered medium provided the renormalization constants are chosen
appropriately and the length-scales of the random perturbations are small. As an
example, the homogenization of anisotropic spherical inclusions randomly dispersed
in an isotropic host medium is considered, and the effective Lamé constants of the
homogenized disordered medium evaluated and discussed.
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1. Introduction

This paper is concerned with the homogenization of a linear elastic solid medium
with stochastic variation of constitutive properties (CPs) at short length-scales. The
propagation of suitably averaged time-harmonic elastodynamic fields in such a dis-
ordered medium occurs in a manner characteristic of a homogeneous medium. The
CPs of the latter medium represent the effective constitutive properties (ECPs) of
the homogenized disordered medium (HDM). Because of obvious applications, par-
ticularly for polycrystalline solids and composite materials, the problem of predicting
the ECPs of HDMs has long been of interest to researchers. As a result, a large body
of literature on this topic exists, from which we shall cite here only the most relevant
works.

Most commonly, a disordered medium is modelled either as a homogeneous matrix
medium containing a distribution of discrete inclusions with random positions and
orientations, or as a random continuum with statistically fluctuating CPs. Evidently,
the first model may be regarded as a special case of the second, though the two models
can lead to different homogenization approaches.
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In the discrete scatterer model, the ECP estimation requires consideration of scat-
tering by individual inclusions. This is usually supplemented by suitable assumptions
on the interaction among inclusions, such as Foldy’s approximation (Foldy 1945) or
the more refined quasi-crystalline approximation (QCA) of Lax (1952), to make the
many-body problem tractable. The QCA requires knowledge not only of the inclusion
volume fraction but also of higher-order statistical information (Willis 1980b; Tsang
& Kong 1981a; Varadan et al . 1989), specifically, the two-particle distribution func-
tion, which is not often possible in practice. Self-consistent approaches look simpler
in this regard, since they do not make use of many-particle distribution functions
(Budiansky 1965; Hill 1965; Middya et al . 1985; Sabina & Willis 1988; Sabina et al .
1993; Smyshlyaev et al . 1993). The relative lack of statistical information, however,
may have deleterious effects on the adequacy of these approaches.

In the random continuum model, the CPs of a disordered medium are supposed to
be random functions with known statistics, and the ECPs of the HDM are estimated
from a knowledge of the mean field. This can be done in several ways. One practical
though crude method is to estimate the ECPs with the assumption of either homoge-
neous strain (Voigt 1928) or homogeneous stress (Reuss 1929). A rigorous variational
approach for bounding the ECPs of disordered media on the basis of limited statisti-
cal information was advanced by Hashin & Shtrikman (1962), Kröner (1977), Gairola
& Kröner (1981), Willis (1981), Talbot & Willis (1982a–c) and Hashin (1983), among
others; see also Torquato’s review of bounds on elastostatic ECPs (Torquato 1991).
The variational approach has, of course, little use when the bounds are widely sep-
arated.

Also for the random continuum model, a multiple-scattering theory invoking the
solution of a Dyson-type integral equation for the mean field is often used, the kernel
of the integral equation being expressed through the correlation functions of random
CP perturbations. In the framework of this theory, (i) the now widely used bilocal
approximation for estimating the ECPs of a polycrystalline medium with orientation-
ally disordered grains was introduced by Lifshitz & Rosenzveig (1946, 1951) and by
Lifshitz & Parkhomovski (1948, 1950) in elastostatics and ultrasonics, respectively;
and (ii) a full perturbation series solution for the ECPs was developed by Kudinov
et al . (1975) and Shermegor (1977, p. 157) with the fluctuating parts of the CPs
identified through a small parameter. A satisfying feature of this approach is that it
enables one, at least in principle, to ascertain the ECPs of an HDM to any desired
order of accuracy in the small parameter used. Also, even the lowest-order (i.e. the
bilocal) approximation of this method is capable of accounting for the microstructure
of a disordered medium and reveals attenuation of the mean field due to multiple-
scattering processes (which is not evinced by many other theories, but see Shanker &
Lakhtakia (1993) and Prinkey et al . (1994)). The results of Lifshitz & Parkhomovski
(1948, 1950) were extended by Atthey (1985) to the case of disordered materials
with small textural anisotropy. A refinement of the bilocal approximation through
the causality principle was attempted by Beltzer & Brauner (1985). Clearly, this
approach is effective only if the CP fluctuations are small and perturbation theory
can be used.

Of other modifications of multiple-scattering theory for elastodynamic homoge-
nization, we single out a renormalized formulation reported by Chigarev (1980). The
Lippman–Schwinger equation for the strain tensor of a disordered medium was refor-
mulated in terms of a new field variable by extracting the pointwise singularity of
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an appropriate fourth-rank Green tensor. The resultant singular integral equation
with a spherical exclusion region was averaged, assuming strongly isotropic fluctu-
ations, to yield non-local ECPs at arbitrary wavelengths of external time-harmonic
stimuli. Renormalization indeed has spawned strong-fluctuation theories, for electro-
magnetics (Finkelberg 1967; Ryzhov & Tamoikin 1970; Tsang & Kong 1981b; Stogryn
1983; Zhuck 1994; Michel & Lakhtakia 1995, 1996) and acoustics (Zhuck 1995, 1996),
capable of handling strong CP fluctuations. This is because perturbative schemes for
averaging the renormalized equations operate with parameters that remain small even
for strong CP fluctuations.

Application of the strong-fluctuation theory, based on a renormalization approach,
for elastodynamic homogenization appears to have gone unnoticed by earlier resear-
chers. In order to remedy the situation, here we consider the homogenization of a
macroscopically uniform elastic solid medium with fluctuating density and a stiffness
tensor. The CP fluctuations are allowed to be strong, provided the fluctuations have
a maximum length-scale less than the minimum wavelength of external stimuli.

2. Theoretical developments

(a) Non-local effective constitutive operators

Let all space be occupied by a solid whose stiffness tensor c(r)lmpq and density ρ(r)

are random functions of the spatial variable x = (x1, x2, x3). After assuming an
e−iωt time dependence† and using the standard summation convention for repeated
indices, the equation of motion may be stated as

∂lt
(r)
lm + ω2ρ(r)u(r)

m = −Fm, (2.1)

where t(r)lm, u(r)
m and Fm denote the stress tensor, the displacement and the applied

force, respectively, while the superscript ‘(r)’ signifies random quantities. The strain
tensor,

e(r)
pq = 1

2(∂pu(r)
q + ∂qu

(r)
p ), (2.2)

is related to the stress tensor via the stiffness tensor c(r)lmpq in the constitutive relation,

t
(r)
lm = c

(r)
lmpqe

(r)
pq . (2.3)

The usual symmetries
c
(r)
lmpq = c

(r)
mlpq = c

(r)
lmqp = c

(r)
pqlm

(Mal & Singh 1991) are assumed throughout this work.
In accordance with a suggestion made by Sabina & Willis (1988) in Appendix A

of their paper, we define the following effective constitutive relations:

〈c(r)lmpqe(r)
pq 〉 ≡ c(e)

lmpq ? 〈e(r)
pq 〉+ βlmp ? 〈u(r)

p 〉, (2.4)

〈ρ(r)u(r)
m 〉 ≡ εmpq ? 〈e(r)

pq 〉+ ρ(e)
mp ? 〈u(r)

p 〉, (2.5)

where the angular brackets indicate the expected values of the quantities enclosed.
On taking the ensemble-average of (2.1) and (2.2) and making use of (2.3)–(2.5), we

† The symbol i =
√−1, except when i = 1, 2, 3 is used as an index.
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get

(∂lc
(e)
lmpq + ω2εmpq) ? 〈e(r)

pq 〉+ (ω2ρ(e)
mp + ∂lβlmp) ? 〈u(r)

p 〉 = −Fm, (2.6)

〈e(r)
pq 〉 = 1

2 [∂p〈u(r)
q 〉+ ∂q〈u(r)

p 〉] (2.7)

as the mean field equations.
The nature of the operations defined on the right-hand sides of (2.4) and (2.5)

makes the four deterministic effective constitutive operators (ECOs), c(e)
lmpq, βlmp,

εmpq and ρ
(e)
mp, non-local; thus

η ? v ≡
∫

d3x′ η(x, x′)v(x′), (2.8)

where the ECOs have been denoted symbolically by η, and v(x) is a testing function.
Our focus lies here on a disordered medium with macroscopically uniform properties,
i.e. the random functions c(r)lmpq and ρ(r) are statistically homogeneous and homoge-
neously interrelated.† Then the integral on the right-hand side of (2.8) becomes a
convolution integral as per

η ? v ≡
∫

d3x′ η(x− x′)v(x′). (2.9)

The shift invariance of the ECOs means that

η(x− x′) = (2π)−3
∫

d3k η̃(k) exp[ik · (x− x′)]; (2.10)

consequently,

η ? exp(ik · x) ≡ η̃(k) exp(ik · x) (2.11)

for an arbitrary wave vector k = (k1, k2, k3). Equation (2.11) defines the spectral
counterpart‡ η̃(k) of an operator η with a shift-invariant kernel η(x − x′) for the
remainder of this work.

When the body force has the spectral form

Fm(x) = Am(k) exp(ik · x), (2.12)

k being a specified wave vector, the mean displacement and strain in a macroscopi-
cally uniform medium have, by virtue of (2.6) and (2.7), spectral forms as well:

〈u(r)
m (x)〉 = Um(k) exp(ik · x), (2.13)

〈e(r)
pq (x)〉 = Epq(k) exp(ik · x). (2.14)

† A random field is called statistically homogeneous in a narrow sense if its multipoint statistical
moments of any order are shift-invariant functions of spatial variables. Let Υ (r)

1 (x) and Υ
(r)
2 (x) each

describe a statistically homogeneous field. These fields are said to be homogeneously interrelated in a
narrow sense if their mixed multipoint statistical moments of any order are shift-invariant functions
of spatial variables. In a wider sense, two random fields Υ (r)

1 (x) and Υ
(r)
2 (x) are called statistically

homogeneous and homogeneously interrelated if the aforementioned requirements are met by their first
two statistical moments; that is, their average values 〈Υ (r)

1 (x)〉 and 〈Υ (r)
2 (x)〉 do not depend upon spatial

variables, and their two-point second-order statistical moments,

〈Υ (r)
1 (x)Υ (r)

1 (x′)〉, 〈Υ (r)
2 (x)Υ (r)

2 (x′)〉, 〈Υ (r)
1 (x)Υ (r)

2 (x′)〉,
depend on x and x′ through the difference variable x− x′ only.

‡ The spectral counterpart differs from the Fourier transform by a factor of (2π)3.
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Simultaneously, the non-local ECOs simplify so that for v(x) = V (k) exp(ik · x) one
has

η ? v ≡ η̃(k)V (k) exp(ik · x), η = c
(e)
lmpq, βlmp, εmpq, ρ

(e)
mp, (2.15)

with

lim
k→0

c̃
(e)
lmpq(k) = c†lmpq, lim

k→0
β̃lmp(k) = β†lmp,

lim
k→0

ε̃mpq(k) = ε†mpq, lim
k→0

ρ̃(e)
mp(k) = ρ†mp

 (2.16)

as the respective long-wavelength limits. As a non-local description must conform to
local elasticity theory at a small wavenumber k =

√
k · k (Nowinski 1984), we must

have

β†lmp ≡ 0, ε†mpq ≡ 0, ρ†mp ≡ ρ†δmp, (2.17)

with δmp as the Kronecker delta.

(b) Renormalized equations

Equations (2.1) and (2.2) do not easily yield to further analysis. Tractability is
afforded by the definition of a homogeneous, anisotropic solid medium, with non-
random density ρ and stiffness tensor clmpq, as a comparison medium (Hashin &
Shtrikman 1962; Shermegor 1977; Willis 1980a, b; Talbot & Willis 1982a–c). Paren-
thetically, Appendix A provides a comparison of our approach with that pioneered
by Willis: although the concept of a comparison medium is used in both approaches,
they are also quite different from one another.

Suppose this anisotropic comparison medium (ACM) occupies all space and is
driven by Fm. Then the displacement um in the ACM satisfies the following equation
of motion:

clmpq∂l∂qup + ω2ρum = −Fm. (2.18)

The solution of this linear equation can be written as (Wang & Achenbach 1995)

up = Gpm ? Fm, (2.19)

using the Green operators Gpm, which are conveniently arranged in a 3 × 3 matrix
Green operator Ĝ ≡ [Gpm]. In the k-space, the operator Ĝ converts to the spectral
Green matrix

ˆ̃G(k) = [k2â(k)− ω2ρÎ]−1, (2.20)

where Î is the 3× 3 identity matrix, and the 3× 3 matrix â(k) has components

amp(k) =
klclmpqkq

k2 . (2.21)

The right-hand side of (2.20) can be simplified using matrix algebra. Thus,

ˆ̃G(k) =
D̂(k)
∆(k)

, (2.22)

where (Chen 1993, p. 14)

D̂(k) = k4 adj â(k) + ω2ρk2[â(k)− Î Tr â(k)] + ω4ρ2Î , (2.23)

∆(k) = k6 det â(k)− ω2ρk4 Tr[adj â(k)] + ω4ρ2k2 Tr â(k)− ω6ρ3. (2.24)
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Here and hereafter, adj, det and Tr, respectively, stand for the adjoint, the determi-
nant and the trace of a matrix.

Let us now compare the ACM to our disordered medium. Substituting (2.2) and
(2.3) in (2.1), we synthesize the following equation of motion:

clmpq∂l∂qu
(r)
p + ω2ρu(r)

m = −Fm − δF (r)
m . (2.25)

In this equation,

δF (r)
m = ∂lδc

(r)
lmpqe

(r)
pq + ω2δρ(r)u(r)

m , (2.26)

δc
(r)
lmpq = c

(r)
lmpq − clmpq, (2.27)

δρ(r) = ρ(r) − ρ, (2.28)

are to be viewed as perturbations relative to the ACM, which becomes clear on
comparing (2.18) and (2.25).

Equation (2.25) can be solved in the same way as (2.18) was, the solution being

u
(r)
j = uj + ω2Gjm ? [δρ(r)u(r)

m ] +Hjlm ? [δc(r)lmpqe
(r)
pq ]. (2.29)

This solution, when substituted into (2.2), leads to

e
(r)
ij = eij + ω2Gijm ? [δρ(r)u(r)

m ] +Hijlm ? [δc(r)lmpqe
(r)
pq ], (2.30)

with eij = 1
2(∂iuj + ∂jui) being the strain tensor in the ACM. In the two foregoing

relations, we have employed the following three auxiliary operators:

Hjlm = ∂lGjm, (2.31)

Gijm = 1
2(∂iGjm + ∂jGim), (2.32)

Hijlm = ∂lGijm. (2.33)

Now, the spectral Green matrix ˆ̃G(k) can be advantageously recast as

ˆ̃G(k) =
b̂(k)
k2 +

ω2ρ

k2∆(k)
b̂(k) ◦ D̂(k), (2.34)

where the symbol ◦ denotes matrix multiplication and b̂(k) = â−1(k). Using (2.34),
we find the spectral counterpart matrix of the operator Hijlm as

H̃ijlm(k) = − 1
2k2 [kjbim(k) + kibjm(k)]kl − ω2ρ

2k2∆(k)
[kjbis(k) + kibjs(k)]klDsm(k),

(2.35)

where bmn(k) and Dmn(k) are the respective elements of the matrices b̂(k) and D̂(k).
The first term on the right-hand side of (2.35) does not vanish as k →∞. Hence,

Hijlm can be split into two parts; thus in formal operator notation (Chigarev 1980;
Zhuck 1994, 1996),

Hijlm = H′ijlm − Sijlm, (2.36)

where H′ijlm is a singular integral operator associated with some infinitely small
exclusion region and Sijlm is a constant tensor. Both terms on the right-hand side of
(2.36) are strongly dependent on an exclusion region, whereas their difference, being
the left-hand side of (2.36), is defined uniquely.
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Working, however, in the k-space (i.e. the spectral domain), we follow Zhuck (1994,
1996) to postulate the spectral counterpart of H′ijlm as

H̃′ijlm(k) = H̃ijlm(k) + Sijlm, (2.37)

where Sijlm is an arbitrary renormalization tensor independent of k. This definition
relieves us of the necessity to decide on the shape and the size of the exclusion
region; more importantly, the precise mathematical nature of H′ijlm plays no role in
the following analysis. However, we still have to eventually decide upon an optimally
efficacious Sijlm.

We are now in a position to renormalize (2.29) and (2.30). Let us define a new
random second-rank tensor

f
(r)
ij = e

(r)
ij + Sijlmδc

(r)
lmpqe

(r)
pq , (2.38)

as well as a random fourth-rank tensor η(r)
pqst so that

e(r)
pq = η

(r)
pqstf

(r)
st . (2.39)

Then, (2.30) can be recast as

f
(r)
ij = eij + ω2Gijm ? [δρ(r)u(r)

m ] +H′ijlm ? [ξ(r)
lmpqf

(r)
pq ], (2.40)

where

ξ
(r)
lmpq = δc

(r)
lmstη

(r)
stpq (2.41)

plays the part of a random perturbation tensor associated with the CP fluctuations
of the disordered medium. Similarly, (2.29) can be transformed into

u
(r)
j = uj + ω2Gjm ? [δρ(r)u(r)

m ] +Hjlm ? [ξ(r)
lmpqf

(r)
pq ]. (2.42)

Equations (2.40) and (2.42) constitute a set of renormalized equations. They con-
tain the CPs ρ and clmpq of the ACM as well as the renormalization tensor Sijlm as
free parameters, whose optimal selection are key issues in our approach. Parentheti-
cally, (2.40) and (2.42) respectively reduce to (2.30) and (2.29), if we set Sijlm ≡ 0.

(c) Effective perturbation operators

Having obtained the renormalized equations (2.40) and (2.42), we proceed to estab-
lish linear relationships between the mean values of ξ(r)

lmpqf
(r)
pq and δρ(r)u

(r)
m on the

one hand and those of f (r)
pq and u

(r)
p on the other.

In order to facilitate presentation, let us adopt an abbreviated formal notation:

ψ(r) =

[
f

(r)
ij

urj

]
, ψ =

[
eij
uj

]
, (2.43)

Γ =
[H′ijlm ω2Gijm
Hjlm ω2Gjm

]
, Π(r) =

[
ξ

(r)
lmpq 0
0 δρ(r)

]
. (2.44)

Then, both (2.40) and (2.42) can be compactly stated as

ψ(r) = ψ + ΓΠ(r) ? ψ(r), (2.45)
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whose formal solution is

ψ(r) = (1− ΓΠ(r))−1 ? ψ. (2.46)

After using the consequent relations,

〈ψ(r)〉 = 〈(1− ΓΠ(r))−1〉 ? ψ, (2.47)

〈Π(r)ψ(r)〉 = 〈Π(r)(1− ΓΠ(r))−1〉 ? ψ, (2.48)

the deterministic operator

Π(e) = 〈Π(r)(1− ΓΠ(r))−1〉〈(1− ΓΠ(r))−1〉−1 (2.49)

can be shown to satisfy the identity

〈Π(r)ψ(r)〉 = Π(e) ? 〈ψ(r)〉. (2.50)

Equivalently,

〈ξ(r)
lmpqf

(r)
pq 〉 = ălmpq ? 〈f (r)

pq 〉+ b̆lmp ? 〈u(r)
p 〉, (2.51)

〈δρ(r)u(r)
m 〉 = v̆mpq ? 〈f (r)

pq 〉+ w̆mp ? 〈u(r)
p 〉, (2.52)

where ălmpq, b̆lmp, v̆mpq and w̆mp are effective perturbation operators (EPOs) (Ry-
zhov & Tamoikin 1970; Zhuck 1996).

Suppose that the right-hand side of (2.49) has been ascertained somehow, either
exactly or approximately, so that the EPOs are known. Now, from (2.4), (2.5), (2.38),
(2.39) and (2.41), we have

〈f (r)
ij 〉 = 〈e(r)

ij 〉+ Sijlm(c(e)
lmpq − clmpq) ? 〈e(r)

pq 〉+ Sijlmβlmp ? 〈u(r)
p 〉, (2.53)

〈ξ(r)
lmpqf

(r)
pq 〉 = (c(e)

lmpq − clmpq) ? 〈e(r)
pq 〉+ βlmp ? 〈u(r)

p 〉, (2.54)

〈δρ(r)u(r)
m 〉 = εmpq ? 〈e(r)

pq 〉+ (ρ(e)
mp − ρδmp) ? 〈u(r)

p 〉. (2.55)

On comparing (2.54) and (2.55) with (2.51) and (2.52), and taking (2.53) into
account, the ECOs and the EPOs can be related as follows:

c
(e)
lmpq − clmpq = ălmpq + ălmrsSrstu(c(e)

tupq − ctupq), (2.56)

βlmp = b̆lmp + ălmrsSrstuβtup, (2.57)

εmpq = v̆mpq + v̆mrsSrstu(c(e)
tupq − ctupq), (2.58)

ρ(e)
mp = ρδmp + w̆mp + v̆mrsSrstuβtup. (2.59)

The operator equations (2.56)–(2.59) reduce to algebraic relations in the k-space,
whence c̃(e)

lmpq(k), β̃lmp(k), ε̃mpq(k), ρ̃(e)
mp(k) can be easily determined from ãlmpq(k),

b̃lmp(k), ṽmpq(k) and w̃mp(k). Thus, the crux of the matter is the evaluation of the
right-hand side of (2.49). But that cannot be accomplished rigorously and accurately.
Some approximations are needed for further analysis, which we discuss in § 2 d.

In passing, however, let us remark on a disordered medium with uniform density.
We can then choose ρ = ρ(r) so that δρ(r) = 0 and the reductions b̆lmp ≡ 0, v̆mpq ≡ 0
and w̆mp ≡ 0 follow. Hence, βlmp ≡ 0, εmpq ≡ 0, and ρ(e)

mp ≡ ρδmp, so that the density
remains unaltered during homogenization.
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(d) Bilocal approximation

Following an argument laid out by Finkelberg (1967), let us expand the right-hand
side of (2.49) in powers of Π(r); thus,

Π(e) =
∞∑
n=1

Πn, (2.60)

where

Π1 = 〈Π(r)〉, (2.61)

Πn = 〈Π(r)(ΓΠ(r))n−1〉 −
n−1∑
m=1

Πm〈(ΓΠ(r))n−m〉; n = 2, 3, 4, . . . . (2.62)

The bilocal approximation (Lifshitz & Rosenzveig 1946) is obtained after retaining
only the first two terms in (2.60), i.e.

Π(e) ≈ 〈Π(r)〉+ 〈Π(r)ΓΠ(r)〉 − 〈Π(r)〉Γ 〈Π(r)〉, (2.63)

and the bilocally approximated EPOs are easily ascertained therefrom. After trans-
forming to the k-space, (2.56)–(2.59) can be solved.

In particular, on taking the long-wavelength limit k → 0, we get

c†lmpq ≈ clmpq + 〈ξ(r)
lmpq〉+ 〈ξ(r)

lmrs〉Srstu〈ξ(r)
tupq〉

− 1
2ω

2ρ

∫
d3k′

k′t
k′2

Blmrstupq (k′)G̃vu(k′)[k′sbrv(k
′) + k′rbsv(k

′)]

+
∫

d3k′Blmrstupq (k′)
{
Srstu − k′t

2k′2
[k′sbru(k′) + k′rbsu(k′)]

}
, (2.64)

β†lmp ≈ −1
2 iω2

∫
d3k′Blmst(k′)[k′sG̃tp(k

′) + k′tG̃sp(k
′)], (2.65)

ε†mpq ≈ −i
∫

d3k′ k′sBstpq(−k′)G̃mt(k′), (2.66)

ρ†mp ≈ [ρ+ 〈δρ(r)〉]δmp + ω2
∫

d3k′B(k′)G̃mp(k′). (2.67)

In these expressions, the spectral densities Blmrstupq (k), Blmst(k) and B(k) are related
to the correlation functions

Clmrstupq (x− x′) = 〈ξ(r)
lmrs(x)ξ(r)

tupq(x
′)〉 − 〈ξ(r)

lmrs(x)〉〈ξ(r)
tupq(x

′)〉, (2.68)

Clmst(x− x′) = 〈ξ(r)
lmst(x)δρ(r)(x′)〉 − 〈ξ(r)

lmst(x)〉〈δρ(r)(x′)〉, (2.69)

C(x− x′) = 〈δρ(r)(x)δρ(r)(x′)〉 − 〈δρ(r)(x)〉〈δρ(r)(x′)〉 (2.70)

through the Fourier transform; thus,

B(k) = (2π)−3
∫

d3xC(x− x′) exp[−ik · (x− x′)], (2.71)

etc. We must point out that the poles of ˆ̃G(k′), which coincide with the zeros of
∆(k′), are supposed to occur at complex locations. If the ACM is non-dissipative,
then it has to be made slightly dissipative as an artifice to evaluate the k′-integrals.
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In order to simplify further analysis, we assume that Clmst(x− x′) are even func-
tions of x − x′, which means that Blmst(k′) are odd functions of k′. Because of the
similar parities of G̃tp(k′) and G̃sp(k′), the integrand in (2.65) is an odd function of
k′. Hence, integration within infinite limits on the right-hand side of (2.65) yields
β†lmp = 0 in the bilocal approximation. For the same reason, ε†mpq = 0 also; and the
HDM turns out to be adequately described by an effective stiffness tensor c†lmpq and
an effective density tensor ρ†mp.

(e) Strong CP fluctuations

The right-hand sides of (2.64) and (2.67) can be further simplified by eliminating
secular terms (Tsang & Kong 1981b). The secular terms in these expressions contain
at least one mean value 〈δρ(r)〉 or 〈ξ(r)

lmpq〉 as a multiplier.
To help visualize the notion of secularity, let us introduce positive deterministic

constants σρ and σc such that δρ(r) ∼ σρ, δc(r)lmpq ∼ σc and ξ
(r)
lmpq ∼ σc. Let Lρ and

Lc be the characteristic length-scales of the random density and stiffness fluctua-
tions, respectively. A distinctive feature of a secular term is that its growth with
the strength of property fluctuations, i.e. σρ and σc, cannot be tamed through small
parameters, e.g. Lρ, Lc and ω (Tsang & Kong 1981b).

If 〈δρ(r)〉 and 〈ξ(r)
lmpq〉 are not null-valued, then any solution found by truncating

the series (2.60) contains secular terms. We must therefore require the two conditions

〈δρ(r)〉 = 0, (2.72)

〈ξ(r)
lmpq〉 = 0, (2.73)

to hold. In turn, these conditions imply that we must set

ρ = 〈ρ(r)〉, (2.74)

and choose clmpq and Sijlm such that

〈(c(r)lmst − clmst){[1 + S(c(r) − c)]−1}stpq〉 = 0. (2.75)

In an effort to satisfy the requirement (2.75), let us concentrate on the last term
on the right-hand side of (2.64). This term, being proportional to σ2

c , is secular.
To eliminate this term, let us choose the elements of the renormalization tensor as
solutions of the following set of coupled equations:

Srstu

∫
d3k Blmrstupq (k) =

∫
d3k

kt
2k2B

lmrs
tupq (k)[ksbru(k) + krbsu(k)]. (2.76)

Consequently, (2.72)–(2.75) yield

c†lmpq ≈ clmpq − 1
2ω

2ρ

∫
d3k

kt
k2B

lmrs
tupq (k)G̃vu(k)[ksbrv(k) + krbsv(k)], (2.77)

ρ†mp ≈ ρδmp + ω2
∫

d3k B(k)G̃mp(k). (2.78)

In order to ascertain the regimes of validity of the expressions (2.77) and (2.78), we
have to compare the second terms with respect to the first terms on the right-hand
sides of these two equations. Let us use the slightly less accurate but more convenient
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expressions

c†lmpq ≈ clmpq − 1
2ω

2ρ

∫
d3k

kt
k4B

lmrs
tupq (k)bvu(k)[ksbrv(k) + krbsv(k)], (2.79)

ρ†mp ≈ ρδmp + ω2
∫

d3k
1
k2B(k)bmp(k), (2.80)

which emerge after evaluating the spectral Green matrix elements encountered in the
integrands of (2.77) and (2.78) at ω = 0. We find that the results (2.77) and (2.78)
are adequate, provided the two criteria,

(ωLc)2
(
σc
c(t)

)2
ρ

c(t)
� 1, (2.81)

(ωLρ)2
(
σρ
ρ

)2
ρ

c(t)
� 1, (2.82)

hold, with c(t) as the magnitude of a typical value of clmpq. The most attractive
feature of these criteria is that they authorize the application of (2.77) and (2.78)
when the CP fluctuations are strong (i.e. σc/c(t) � 1 and/or σρ/ρ � 1), provided
the length-scales Lc and Lρ are small and/or the angular frequency ω is low.

By retracing the preceding analysis, we can show that the factor ω2σ2
ρL

2
ρ/c

(t)ρ
controlling the applicability of (2.78) is, in fact, unaffected by the choice of the
renormalization tensor Sijlm. In contrast, a proper choice of Sijlm turns out to be
of crucial importance when applying (2.77). Indeed, a departure from the Sijlm
prescribed by (2.76) brings in secular terms, making the right-hand side of (2.64)
applicable only for weak CP fluctuations.

(f ) Optimal choice of the renormalization tensor

Depending on the statistical properties of the random stiffness tensor c(r)lmpq, the
renormalization tensor Sijlm may be ascertained analytically. Let us consider a ran-
dom perturbation tensor ξ(r)

lmpq whose correlation functions (2.68) are of the following
form:

Clmrstupq (x− x′) =
∫

d3aw(a)F lmrstupq (θa). (2.83)

Here, a = (a1, a2, a3) is real-valued; the arbitrary functions F lmrstupq (θ) are specified on
ellipsoidal iso-correlation surfaces

θ2
a =

(x1 − x′1)2

a2
1

+
(x2 − x2)2

a2
2

+
(x3 − x3)2

a2
3

; (2.84)

and the weight function w(a) is also arbitrary except that it must be non-zero only in
the first octant of the a-space and obeys the normalization condition

∫
d3aw(a) = 1.

As an example, w(a) = δ(a− L), where L = (L1, L2, L3) is a vector of length-scales
and δ(x) is the Dirac delta function.

A straightforward calculation reveals that

Blmrstupq (k) =
∫

d3aw(a)a1a2a3Φ
lmrs
tupq (τa), (2.85)
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where

Φlmrstupq (τa) =
1

2π2τa

∫ +∞

0
dθ θ sin(τaθ)F lmrstupq (θ) (2.86)

depend on

τa = [(k1a1)2 + (k2a2)2 + (k3a3)2]1/2. (2.87)

Inserting (2.85) into (2.76), interchanging the order of the k-integration and the
a-integration, and normalizing k1, k2 and k3 into τ1, τ2 and τ3 via

k1 =
τ1
a1
, k2 =

τ2
a2
, k3 =

τ3
a3
, (2.88)

we obtain Zhuck (1994, 1996)∫ +∞

0
τ2Φlmrstupq (τ) dτ

[
4πSrstu −

∫
d3aw(a)

∫
Σ

dΣ Ψ(τ)
]

= 0. (2.89)

Here

Ψ(τ) = 1
2k
−2kt[bru(k)ks + bsu(k)kr], (2.90)

with k1, k2 and k3 being expressed in terms of τ1, τ2 and τ3 via (2.88); Σ ≡ {τ2
1 +

τ2
2 + τ2

3 = 1} is a sphere of unit radius centred at the origin of the τ -space; and dΣ
is a surface element of sphere Σ. Equation (2.89) is satisfied by

Srstu =
1

4π

∫
d3aw(a)

∫
Σ

dΣ Ψ(τ), (2.91)

so that, after reverting to the original variables k1, k2 and k3, we get

Srstu =
1

8π

∫
d3aw(a)a1a2a3

∫
Sa

dS
kt[ksbru(k) + krbsu(k)]
k2[k2

1a
4
1 + k2

2a
4
2 + k2

3a
4
3]1/2

, (2.92)

where dS is a surface element of the ellipsoid

Sa ≡ {(k1a1)2 + (k2a2)2 + (k3a3)2 = 1} (2.93)

specified in the k-space as a function of a.
Another meaningful example is provided by the random perturbation tensor ξlmpq

whose correlation functions (2.68) depend only on the distance R = |x− x′| but not
on x and x′ separately; i.e.

Clmrstupq (x− x′) ≡ Clmrstupq (R), (2.94)

and, consequently,

Blmrstupq (k) ≡ Blmrstupq (k) =
1

2π2k

∫ +∞

0
dRR sin kRClmrstupq (R). (2.95)

These correlation functions describe, among other things, a particulate composite
medium prepared by randomly dispersing spherical inclusions in a uniform matrix
medium. Using (2.95) in (2.76), we get

Srstu =
1

8π

∫
4π

dΩk
kt
k2 [ksbru(k) + krbsu(k)], (2.96)

where dΩk stands for the solid-angle element in k-space.
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In continuation of this example, let the ACM be isotropic, i.e.

clmpq = λδlmδpq + µ(δlpδmq + δlqδmp), (2.97)

with Lamé constants λ and µ. Then,

bru(k) =
1
µ

(
δru − krku

k2

λ+ µ

λ+ 2µ

)
, (2.98)

and (2.96) yields the renormalization tensor

Srstu =
(3λ+ 8µ)(δrtδsu + δruδst)− 2(λ+ µ)δrsδtu

30µ(λ+ 2µ)
. (2.99)

3. Application to a particulate composite medium

(a) Spherical inclusions in an isotropic matrix medium

Let us apply the developed strong-fluctuation approach for homogenizing a par-
ticulate composite medium prepared by randomly dispersing identical, uniform,
anisotropic, spherical inclusions in an isotropic matrix medium having a density
ρ(1) and Lamé constants λ(1) and µ(1). The density of each inclusion is ρ(2) and its
stiffness tensor in its own crystallographic (i.e. material) frame of reference is denoted
by c

(c)
lmpq. Perfect bonding between the spherical inclusions and the matrix medium

is assumed.
Let the random density of this disordered medium be denoted as

ρ(r)(x) = θ(r)(x)ρ(2) + [1− θ(r)(x)]ρ(1), (3.1)

where the characteristic random function θ(r)(x) = 1 when x is occupied by the
inclusion medium, and θ(r)(x) = 0 otherwise. The inclusions are located at random
positions such that the inclusion volume fraction

〈θ(r)(x)〉 = v2 (3.2)

is constant over the entire space, and the two-inclusion correlation function

〈θ(r)(x)θ(r)(x′)〉 = p(R) (3.3)

is isotropic. The statistical topology of the chosen particulate composite is further
delineated by a non-dimensional correlation function (Shermegor 1977, ch. 4; Lin et
al . 1994)

f(R) =
p(R)− v2

2

v2(1− v2)
, (3.4)

whose spatial Fourier transform ϕ(k) is defined through (2.95). We note for the sake
of completeness that ϕ(k) is a real non-negative function, being the spectral density
of the correlation function of a real-valued random field [θ(r)(x) − v2]

√
v2(1− v2)

(Gihman et al . 1979).
The random stiffness tensor of the disordered medium is given by the following

expressions:

c
(r)
lmpq(x) = λ(1)δlmδpq + µ(1)(δlpδmq + δlqδmp), (3.5)
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if x is occupied by the matrix medium; and

c
(r)
lmpq(x) = [α(r)

li α
(r)
mjα

(r)
pkα

(r)
qn ]c(c)

ijkn, (3.6)

if otherwise. Here, αli is the cosine of an angle between the lth axis of the laboratory
frame of reference and the ith axis of the crystallographic frame of reference of a par-
ticular inclusion. Although the inclusions are identical, they differ from each other
in the orientation of their crystallographic axes. The different orientations are char-
acterized by the products α

(r)
li α

(r)
mjα

(r)
pkα

(r)
qn in (3.6). We assume that all orientations

are equally probable, and that the orientation of a particular inclusion is statistically
independent of the position of this inclusion as well as of the orientation and position
of any other inclusion.

(b) Isotropic comparison medium

Clearly, the HDM is isotropic. Therefore, let us choose the ACM to be isotropic,
with its stiffness tensor given by (2.97). In view of the spherical symmetry of the cor-
relation function (3.4), the correlation functions (2.68) of the random perturbation
tensor must satisfy (2.94). Hence, the renormalization tensor Srstu can be calcu-
lated from (2.99). The resulting determination of Srstu is invariant with respect to
the transformations from the crystallographic frame of reference of any particular
inclusion and the laboratory frame; i.e.

Srstu = S
(c)
rstu. (3.7)

The random perturbation tensor of (2.41) is then given by

ξ
(r)
lmpq(x) = [κ(1) − 2

3ζ
(1)]δlmδpq + ζ(1)(δlpδmq + δlqδmp) ≡ ξ(1)

lmpq (3.8)

when x is occupied by the matrix medium, with

κ(1) =
(λ+ 2µ)[3(λ(1) − λ) + 2(µ(1) − µ)]

4µ+ 3λ(1) + 2µ(1) , (3.9)

ζ(1) =
15µ(λ+ 2µ)(µ(1) − µ)

µ(9λ+ 14µ) + 2µ(1)(3λ+ 8µ)
. (3.10)

In order to calculate ξ(r)
lmpq(x) when x is occupied by the inclusion medium, let us

employ the well-known rule

ξ
(r)
lmpq(x) = α

(r)
li (x)α(r)

mj(x)α(r)
pk (x)α(r)

qn(x)ξ(c)
ijkn(x). (3.11)

Although α(r)
li (x), etc., are random due to random orientations of the inclusions, the

tensor

ξ
(c)
lmpq ≡ δc(c)

lmstη
(c)
stpq (3.12)

is deterministic. Here

δc
(c)
lmst = [c(c)

lmst − λδlmδst − µ(δlsδmt + δltδms)], (3.13)

and the tensor η(c)
rspq is defined to ensure the inversion, in a manner analogous to that

of (2.39), of the equation

e(r,c)
pq = η

(c)
pqstf

(r,c)
st , (3.14)
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where e(r,c)
pq are the random strain components in the crystallographic frame and

f
(r,c)
ij = e

(r,c)
ij + Sijlmδc

(c)
lmpqe

(r,c)
pq , (3.15)

is the crystallographic-frame counterpart of (2.38).
Thus, on taking the ensemble-average of ξ(r)

lmpq(x) , we obtain the following expres-
sion:

〈ξ(r)
lmpq(x)〉 = [v1κ

(1) + v2κ
(2) − 2

3(v1ζ
(1) + v2ζ

(2))]δlmδpq

+ (v1ζ
(1) + v2ζ

(2))(δlpδmq + δlqδmp), (3.16)

where v1 = 1− v2, while

κ(2) = 1
9ξ

(c)
rrss, (3.17)

ζ(2) = 1
10(ξ(c)

rsrs − 1
3ξ

(c)
rrss). (3.18)

Making use of (3.16) in (2.73), we get a system of two coupled equations,

v1κ
(1) + v2κ

(2) = 0, (3.19)

v1ζ
(1) + v2ζ

(2) = 0, (3.20)

to determine the Lamé constants λ and µ of the isotropic comparison medium (ICM).
The density ρ of the ICM turns out to be

ρ = v1ρ
(1) + v2ρ

(2) (3.21)

from (2.74).

(c) Effective constitutive properties

For the chosen disordered medium, the correlation functions defined in (2.68)–
(2.70) can be written in terms of f(R) as (Shermegor 1977, ch. 4),

Clmrstupq (x− x′) = v1v2f(R)Dlmrs
tupq , (3.22)

Clmst(x− x′) = v1v2f(R)Dlmst, (3.23)

C(x− x′) = v1v2f(R)D. (3.24)

In these relations,

Dlmrs
tupq = ξ

(1)
lmrsξ

(1)
tupq + 〈α(r)

ld α
(r)
meα

(r)
rf α

(r)
sg α

(r)
th α

(r)
ui α

(r)
pj α

(r)
qk 〉orξ(c)

defgξ
(c)
hijk

− 〈α(r)
ld α

(r)
meα

(r)
rf α

(r)
sg 〉orξ(c)

defgξ
(1)
tupq

− 〈α(r)
th α

(r)
ui α

(r)
pj α

(r)
qk 〉orξ(1)

lmrsξ
(c)
hijk, (3.25)

Dlmst = [ρ(1) − ρ(2)][ξ(1)
lmst − 〈α(r)

li α
(r)
mjα

(r)
skα

(r)
tn 〉orξ(c)

ijkn], (3.26)

D = [ρ(1) − ρ(2)]2, (3.27)

where 〈. . . 〉or denotes the average over all orientations of the crystallographic frame of
reference relative to the laboratory frame of reference. We observe that Clmst(x−x′)
in (3.23) is an even function of x− x′, thereby leading to β†lmp = 0 and ε†mpq = 0, as
argued in § 2 d.

Proc. R. Soc. Lond. A (1999)



558 N. P. Zhuck and A. Lakhtakia

Having in mind that the HDM is expected to be isotropic, we remark that the
second term on the right-hand side of (2.77) must turn out to actually have a very
simple structure. In other words, (2.77) has to simplify to

c†lmpq = clmpq + a†lmpq, (3.28)
where

a†lmpq = δλδlmδpq + δµ(δlpδmq + δlqδmp), (3.29)

δλ = 1
15(2a†llpp − a†lmlm), (3.30)

δµ = 1
10(a†lmlm − 1

3a
†
llpp). (3.31)

The right-hand sides of (3.30) and (3.31) can be evaluated by using the spectral
Green matrix of the ICM, i.e. by substituting

G̃mj(k) =
δmj

∆(s)(k)
− (λ+ µ)kmkj
∆(s)(k)∆(l)(k)

(3.32)

on the right-hand side of (2.77) with
∆(s)(k) = µk2 − ω2ρ, (3.33)

∆(l)(k) = (λ+ 2µ)k2 − ω2ρ. (3.34)
Thus,

δλ = −4
3π
ω2ρ

µ
v1v2

∫ +∞

0
dk ϕ(k)k2

[
λ+ µ

λ+ 2µ
ω2ρ− (λ+ 3µ)k2

∆(s)(k)∆(l)(k)
L+

M

∆(s)(k)

]
, (3.35)

δµ = −4
3π
ω2ρ

µ
v1v2

∫ +∞

0
dk ϕ(k)k2

[
λ+ µ

λ+ 2µ
ω2ρ− (λ+ 3µ)k2

∆(s)(k)∆(l)(k)
N +

P

∆(s)(k)

]
,

(3.36)

where the constants L, M , N and P are expressible† through contractions of Dlmrs
tupq .

The effective stiffness tensor of the chosen HDM can thus be estimated as
c†lmpq = λ†δlmδpq + µ†(δlpδmq + δlqδmp), (3.37)

where
λ† = λ+ δλ, (3.38)

µ† = µ+ δµ (3.39)
are the effective Lamé constants of the HDM.

The calculation of the effective density tensor ρ†mp is also accomplished by substi-
tuting the spectral Green matrix (3.32) in (2.78) and taking advantage of spherical
symmetry of the relevant spectral density B(k) = v1v2ϕ(k)D. Then the second term
on the right-hand side of (2.78) differs from the second-rank unit tensor δmp only by
the scalar factor

δρ = 4
3πω

2v1v2D

∫ +∞

0
dk ϕ(k)k2 [(2λ+ 5µ)k2 − 3ω2ρ]

∆(s)(k)∆(l)(k)
. (3.40)

Therefore, ρ†mp = ρ†δmp, where

ρ† = ρ+ δρ (3.41)
is the effective density of the HDM.
† The detailed forms of these four constants are available in Appendix B for anisotropic spherical

inclusions, and the particular case of spherical inclusions made of a solid with cubic crystallographic
symmetry is covered in § 3 e.
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(d) Dissipation in the HDM

Let us now consider the effect of attenuation of the mean field propagating in
an originally non-dissipative disordered medium. A physical interpretation of this
attenuation lies in the transference of part of the energy from the coherent to the
incoherent displacements as a result of scattering by randomly dispersed and ran-
domly oriented inclusions.

Mathematically, the dissipation can manifest itself by making the ECPs λ†, µ†
and ρ† complex-valued. By virtue of (2.74), (2.75) and (2.99), let us choose the
ICM to be non-dissipative (i.e. characterized by real positive λ, µ and ρ) when the
disordered medium is itself non-dissipative. We therefore focus on calculating the
real and imaginary parts of δλ, δµ and δρ appearing in (3.38), (3.39) and (3.41).

As the chosen ICM is non-dissipative, the integrands in (3.35), (3.36) and (3.40)
have two simple poles on the Re[k]-axis in the complex k-plane. These poles are
k = k(l) and k = k(s), where

k(l) = ω

√
ρ

λ+ 2µ
, (3.42)

k(s) = ω

√
ρ

µ
(3.43)

are, respectively, the longitudinal and the shear wavenumbers in the ICM. After
displacing the poles artificially into the upper half of the complex k-plane, using
the Cauchy residue theorem, and setting the imaginary parts of the poles to zero
again, the integrals in (3.35), (3.36) and (3.40) can be evaluated for ascertaining
the complex-valued δλ, δµ and δρ in closed form. Expressions for Re[δλ], Re[δµ],
and Re[δρ], respectively, emerge on taking the integrals on the right-hand sides of
(3.35), (3.36) and (3.40) in the principal value sense at the poles k = k(l) and k = k(s);
however, these expressions are not relevant in the present context. More importantly,
we get

Im[δλ] = −2
3π

2v1v2ω
3ρ3/2

[
L

(λ+ 2µ)5/2 +
M − L
µ5/2

]
lim
k→0

ϕ(k), (3.44)

Im[δµ] = −2
3π

2v1v2ω
3ρ3/2

[
N

(λ+ 2µ)5/2 +
P −N
µ5/2

]
lim
k→0

ϕ(k), (3.45)

Im[δρ] = 2
3π

2v1v2ω
3ρ1/2D

[
1

(λ+ 2µ)3/2 +
2

µ3/2

]
lim
k→0

ϕ(k). (3.46)

Next, the effective wavenumbers in the HDM are given by

k(l)
e = ω

√
ρ†

λ† + 2µ†
, (3.47)

k(s)
e = ω

√
ρ†

µ†
(3.48)

for longitudinal and shear waves, respectively. From (3.38), (3.39) and (3.41), and
correct to the first order in δλ, δµ and δρ, we get

k(l)
e ≈ k(l)(1 + γ(l)), (3.49)

k(s)
e ≈ k(s)(1 + γ(s)), (3.50)
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where

γ(l) = 1
2

(
δρ

ρ
− δλ+ 2δµ

λ+ 2µ

)
, (3.51)

γ(s) = 1
2

(
δρ

ρ
− δµ

µ

)
. (3.52)

Then, in accordance with (3.44)–(3.46), we immediately obtain

Im[γ(l)] = 1
3π

2v1v2ω
3ρ3/2

{
D

ρ2

[
1

(λ+ 2µ)3/2 +
2

µ3/2

]
+

1
λ+ 2µ

[
L+ 2N

(λ+ 2µ)5/2 +
M − L+ 2(P −N)

µ5/2

]}
lim
k→0

ϕ(k), (3.53)

Im[γ(s)] = 1
3π

2v1v2ω
3ρ3/2

{
D

ρ2

[
1

(λ+ 2µ)3/2 +
2

µ3/2

]
+

1
µ

[
N

(λ+ 2µ)5/2 +
P −N
µ5/2

]}
lim
k→0

ϕ(k). (3.54)

If Im[γ(l)] > 0 and Im[γ(s)] > 0, the mean elastodynamic fields in the HDM atten-
uate. The attenuation is guaranteed for inclusions with cubic crystallographic sym-
metry (Auld 1990), as will be shown next, but remains unproved for more general
anisotropic spherical inclusions, the inclusion as well as the matrix media being non-
dissipative.

(e) Inclusion medium with cubic crystallographic symmetry

The stiffness tensor of an elastic solid with cubic crystallographic symmetry con-
tains only three independent elements (Auld 1990). Suppose the inclusions in the
disordered medium of interest are made of a medium with cubic symmetry; then,

c
(c)
lmpq = λ(c)δlmδpq + µ(c)(δlpδmq + δlqδmp) + ν(c)

3∑
n=1

δlnδmnδpnδqn. (3.55)

Accordingly, from (3.12) the perturbation tensor turns out to be

ξ
(c)
lmpq = (κ(c) − ε(c))δlmδpq

+ ζ(c)(δlpδmq + δlqδmp) + (3ε(c) − 2ζ(c))
3∑

n=1

δlnδmnδpnδqn, (3.56)

where

κ(c) =
(λ+ 2µ)[3(λ(c) − λ) + 2(µ(c) − µ) + ν(c)]

4µ+ 3λ(c) + 2µ(c) + ν(c) , (3.57)

ζ(c) =
15µ(λ+ 2µ)(µ(c) − µ)

µ(9λ+ 14µ) + 2µ(c)(3λ+ 8µ)
, (3.58)

ε(c) =
5µ(λ+ 2µ)[2(µ(c) − µ) + ν(c)]

µ(9λ+ 14µ) + (2µ(c) + ν(c))(3λ+ 8µ)
. (3.59)
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Hence, (3.17) and (3.18) yield κ(2) = κ(c), ζ(2) = (3/5)(ε(c) + ζ(c)), so that (3.19)
and (3.20) simplify to

v1κ
(1) + v2κ

(c) = 0, (3.60)

5v1ζ
(1) + 3v2(ε(c) + ζ(c)) = 0, (3.61)

respectively, from which equations the Lamé constants of the ICM can be determined.
Application of (B 1)–(B 4) from Appendix B yields

L = 3(κ(1) − κ(c))2 − 4Q, (3.62)

M = 3(κ(1) − κ(c))2 − 10Q, (3.63)
N = 6Q, (3.64)
P = 15Q, (3.65)

where

Q = 1
25{2[ζ(c) − ζ(1)]2 + 3[ε(c) − 2

3ζ
(1)]2} > 0. (3.66)

Because L + 2N > 0, M − L + 2(P − N) > 0, N > 0 and P − N > 0, attenuation
of the mean elastodynamic fields is signified for this case by virtue of (3.49), (3.50),
(3.53) and (3.54).

(f ) Comparison with available elastostatic results

Let us now compare the results of the presented strong-fluctuation approach with
results available for certain simple disordered media. Specifically, we consider only
the elastostatic ECPs of an HDM with spherical inclusions in an isotropic matrix
medium.

On taking the limit ω → 0, we see from (3.35), (3.36) and (3.40) that δλ, δµ and
δρ are proportional to ω2 in the long-wavelength limit. Simultaneously, the ECPs λ†,
µ† and ρ†, respectively, approach the CPs λ, µ and ρ of the comparison medium, by
virtue of (3.38), (3.39) and (3.41). Clearly then, λ, µ and ρ delineate the elastostatic
response characteristics of the HDM.

Next, an elastostatic homogenization theory based on a self-consistent T -matrix
scheme was proposed by Middya et al . (1985) for a two-phase material of cubic crys-
tallographic symmetry. When one specializes equations (22a) and (22b) of Middya
et al . (1985) to the case of an isotropic host material, they coincide exactly with our
(3.60) and (3.61), respectively, leading to identical estimates of the ECPs.

Let us further assume that the inclusion medium is isotropic, i.e. ν(c) = 0. Then,
(3.60) and (3.61) reproduce the well-known results of Hill (1963), Budiansky (1965)
and others (e.g. Berryman 1980; see also Norris (1985), who rederived them in
another form). It is useful to render yet another form of these classical results,

K = v1K
(1) + v2K

(2) − 3v1v2
(K(1) −K(2))2

4µ+ 3(v1K(2) + v2K(1))
, (3.67)

µ = v1µ
(1) + v2µ

(2) +
6(K + 2µ)(µ(1) − µ)(µ(2) − µ)

5µ(3K + µ)
, (3.68)

in terms of the bulk modulus K = λ + 2
3µ and shear modulus µ of the ICM, with

K(1) = λ(1) + 2
3µ

(1), K(2) = λ(c) + 2
3µ

(c) and µ(2) = µ(c). Equation (3.67) conforms to
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equation (2.1) of Chigarev (1980).† This form of (3.67) and (3.68) seems especially
suitable for the development of a numerical solution for K and µ via an iterative
procedure, with the first two terms on the right of both equations constituting the
initial guess necessary to start the chosen iterative procedure.

Finally, when the shear moduli of the inclusion and the matrix media coincide
as well, we conclude from (3.68) that µ = µ(1)(= µ(2)), and equation (3.67) turns
into a well-known result of Hill (1963). As emphasized by Middya et al . (1985),
any reasonable homogenization exercise must restore Hill’s result when the shear
modulus of the disordered medium is uniform.

4. Concluding remarks

Disordered media abound. One way to understand their response characteristics
is to homogenize them. We have presented a renormalization approach that holds
well even for strong CP fluctuations, provided the characteristic length-scales of the
fluctuations are small in relation to the minimum wavelength of the external stimuli.
Our approach has been shown to handle arbitrary anisotropy of the constitutive and
the statistical properties.

Several immediate extensions of our work are possible. First, textural anisotropy
due to preferred orientation of anisotropic and/or non-spherical inclusions can be
studied. Inclusions of several different species dispersed together in a matrix medium
can be accommodated through proper choices of correlation functions. Second, better
estimates of the ECPs are possible: for instance, by using a nonlinear approxima-
tion, which has the merit of being energetically consistent with the Bethe–Salpeter
equation for the second moments of the displacement under the ladder approxi-
mation (Rytov et al . 1987). Finally, second-order statistical moments of a random
elastic wave field could be examined, e.g. by applying the methodology developed by
Brekhovskikh (1985) and Stogryn (1990) in electromagnetic field theory.

We thank O. A. Tretyakov (Kharkov State University) and I. M. Fuks (Institute of Radio
Astronomy, Kharkov, Ukraine) for their questions and comments, and F. G. Bass (formerly at
the Institute of Radiophysics and Electronics, Kharkov, Ukraine) for drawing our attention to
Lifshitz & Rosenzveig (1946, 1951). Thanks are also due to two anonymous reviewers, whose
incisive remarks guided us to certain relevant papers and helped improve our presentation.

Appendix A. Comparison of the presented renormalization
formulation with the White formulation

In response to a suggestion made by a reviewer, we provide here a comparison of
our approach with that pioneered by Willis (1980a, b). Both approaches employ the
concept of a comparison medium, which is a key element in all approaches that view
a composite medium as a combination of a comparison medium and a perturbation.
Respectively, these two enter formulations through (i) the Green functions, and (ii)
the equivalent sources induced within the perturbation regions by the incident field.

The use of volume integral equations can be traced to the classic papers of Lifshitz
& Rosenzveig (1946) and Lifshitz & Parkhomovski (1948) referring, respectively, to
elastostatics and elastodynamics of composite media with uniform mass density. A

† An erroneous plus sign in front of the second term on the right-hand side of Chigarev’s equation
should be replaced by a minus sign.

Proc. R. Soc. Lond. A (1999)



Properties of a disordered elastic solid medium 563

general system of coupled integral equations for composite media with mismatches
in both the stiffness tensor and the mass density was developed by Willis (1980a, b);
cf. eqns (2.24) and (2.25) of Willis (1980a).

The integral equation formulation proposed by us, the manner in which it has
been applied to handle composite media, as well as the physical significance of the
comparison medium used by us, are very different from the formulation developed
by Willis and colleagues. The reasons for this assertion are as follows.

1. The unknown quantities in the Willis formulation are the momentum polar-
ization π and the stress polarization τ , or, equivalently, the displacement u
and the strain e, relative to the comparison medium; see eqn (2.14) of Willis
(1980a). In our system of renormalized integral equations (2.40) and (2.42),
the unknowns are the random displacement u(r)

j and a random field variable
f

(r)
ij . The latter is artificial, but it can be related to the strain via (2.38).

2. The kernel Sx in the Willis formulation is essentially a generalized function of
x−x′, since it possesses a strong delta-function-like singularity when the source
and the field points coincide (i.e. x = x′). This singularity can be ascertained
by treating the second mixed derivative with respect to spatial variables in
eqn (2.26) of Willis (1980a) with the help of generalized function theory. The
kernel Sx differs by a simple scale factor from the Green function Hijlm defined
by us through (2.33). In our renormalized integral equations (2.40) and (2.42),
the kernel with the strongest singularity is H′ijlm. This kernel, obtained by
removing the delta-function singularity from Hijlm (∼ Sx of Willis) in accor-
dance with the prescription (2.36), exhibits a lower degree of singularity than
Hijlm and Sx. This means that the kernels in our integral equations are less
singular than those in the Willis formulation. Actually, the two formulations
belong to different mathematical classes: the equations of Willis are, in fact,
integro-differential ones, whereas ours are singular integral equations.

3. As far as the determination of ECPs is concerned, the Willis formulation has
been applied to discrete particulate composite media only. Various versions of
multiple-scattering theory for particulate composites have been proposed using
the quasi-crystalline approximation (Willis 1980b), the stochastic variational
principle (Talbot & Willis 1982a–c), and a self-consistent method combined
with a Galerkin-type approximation for single-scattering problems (Sabina &
Willis 1988; Sabina et al. 1993; Smyshlyaev et al. 1993). In contrast, any com-
posite medium, whether continuously random or discretely random, is regarded
as a fluctuating continuum in our formulation. The ECPs of the fluctuating con-
tinuum are calculated with the help of integral equations, like those of Dyson,
for the mean values of random displacement u(r) and that of an artificial field
f (r). The kernels of these equations, as well as the ECPs, are given as expan-
sions in powers of a small parameter characteristic of the strong-fluctuation
approach. Thus, our continuum approach differs from the multiple-scattering
approach of Willis and colleagues.

4. Finally, as regards the ACM, it was assumed to coincide with the host medium
by Willis (1980b), chosen to produce the Hashin–Shtrikman lower and upper
bounds for the ECPs (Talbot & Willis 1982a, b), or identified with the HDM
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(Talbot & Willis 1982a, b; Sabina & Willis 1988; Sabina et al . 1993; Smyshlyaev
et al . 1993). Our ACM, however, is chosen to meet the requirements (2.74)
and (2.75) so as eliminate secular terms from an asymptotic solution for the
ECPs and thus make that solution applicable when the CP fluctuations are
strong. Indeed, by construction, the CPs of our ACM differ from the ECPs by
a scattering contribution ∼ ω2. Hence, at non-zero frequencies, our ACM does
not coincide with the HDM and thus cannot be the same as the comparison
(≡ effective) material of self-consistent formulations.

Clearly, the strong-fluctuation formulation presented by us does not belong to
the class of self-consistent formulations. It should be viewed rather as yielding a
perturbative scheme for averaging the renormalized equations that employ specific
perturbative parameters that remain small even for strong CP fluctuations.

Appendix B. Auxiliary parameters for effective
Lamé constants in §3 c

Expressions for the four constants L, M , N and P appearing in (3.35) and (3.36)
are as follows:

L = 3κ(1)2 − 8
15ζ

(1)2 + 1
75 [8ζ(1)ξ

(c)
lmlm + 2(2

3ζ
(1) − 25κ(1))ξ(c)

llrr

+ 2ξ(c)
llrrξ

(c)
ttpp + 4ξ(c)

llrsξ
(c)
rspp − ξ(c)

lmrrξ
(c)
ttlm − 2ξ(c)

lmrsξ
(c)
rslm], (B 1)

M = 3κ(1)2 − 4
3ζ

(1)2 + 1
15 [4ζ(1)ξ

(c)
lmlm − 2(5κ(1) + 2

3ζ
(1))ξ(c)

llrr

+ 2ξ(c)
llrsξ

(c)
rspp − ξ(c)

lmrsξ
(c)
rslm], (B 2)

N = 4
5ζ

(1)2 + 1
50 [8ζ(1)(1

3ξ
(c)
llrr − ξ(c)

lmlm)

+ ξ
(c)
lmrrξ

(c)
ttlm + 2ξ(c)

lmrsξ
(c)
rslm − 1

3(ξ(c)
llrrξ

(c)
ttpp + 2ξ(c)

llrsξ
(c)
rspp)], (B 3)

P = 2ζ(1)2 + 1
30 [4ζ(1)( ξ(c)

llrr − 3ξ(c)
lmlm) + 3ξ(c)

lmrsξ
(c)
rslm − ξ(c)

llrsξ
(c)
rspp]. (B 4)

The right-hand sides of these equations contain invariants of a fourth-rank tensor
ξ

(c)
lmpq and an eighth-rank tensor ξ(c)

lmrsξ
(c)
tupq.
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