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Engineers

        have had an inordinate fondness

       for

         composite materials…
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… right from the Bronze Age.

A. Lakhtakia 



Composite Materials

A. Lakhtakia 



Conspirator-in-Chief:
Tom G. Mackay

School of Mathematics, University of Edinburgh
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• Material Properties (< 1980)
• Design for Functionality

(ca.1980)
• Design for System
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Multifunctionality
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Thanks: Chuck Bakis



Multifunctionality
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Performance Requirements on the Fuselage

1. Light weight (for fuel efficiency)
2. High stiffness (resistance to deformation)
3. High strength (resistance to rupture)
4. High acoustic damping (quieter cabin)
5. Low thermal conductivity (less condensation;

more humid cabin)
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A. Lakhtakia Performance Requirements on the Fuselage

1. Light weight (for fuel efficiency)
2. High stiffness (resistance to deformation)
3. High strength (resistance to rupture)
4. High acoustic damping (quieter cabin)
5. Low thermal conductivity (less condensation; more humid cabin)

Future: Conducting fibers for 
(i) reinforcement
(ii) antennas
(iii) environmental sensing 
(iv) structural health monitoring
(iv) morphing
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Metamaterials

Rodger Walser

SPIE Press (2003)
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Walser’s Definition (2001/2)

• macroscopic composites having a
manmade, three-dimensional, periodic
cellular architecture designed to
produce an optimized combination, not
available in nature, of two or more
responses to specific excitation
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Walser’s Definition (2001/2)

• macroscopic composites having a
manmade, three-dimensional, periodic
cellular architecture designed to
produce an optimized combination, not
available in nature, of two or more
responses to specific excitation
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D.G. Stavenga, Invertebrate superposition eye-structures that 
behave like metamaterial with negative refractive index,
JEOS-RP 1, 06010 (2006).
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Working Definition



      Examples:
Particulate Composite Materials
     with ellipsoidal inclusions
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Homogenizable Metamaterials

• Enhancement of group velocity
• Enhancement of nonlinearity
• Voigt wave propagation
• Bianisotropy
• Negative phase velocity
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• Enhancement of group velocity
• Enhancement of nonlinearity
• Voigt wave propagation
• Bianisotropy
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Homogenizable Metamaterials

• Enhancement of group velocity
• Enhancement of nonlinearity
• Voigt wave propagation
• Bianisotropy
• Negative phase velocity

http://www.esm.psu.edu/~axl4/lakhtakia/documents/Mackay_06_6MRI.pdf
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Negative Phase Velocity
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Adapted from
David Smith’s
website
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Two Important Quantities

• Phase velocity vector

• Time-averaged Poynting vector
= direction of energy flow & attenuation



A. Lakhtakia Positive/Negative
Phase Velocity Medium
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Positive

Refraction by Isotropic
Medium
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Negative

Refraction by Isotropic
Medium
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A. Lakhtakia NPV in Bianisotropic Mediums

Re{k}•<P>  > 0

k = wave vector

Re{k}•<P>  < 0
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Chirality
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(i) Isotropic

Frequency-domain constitutive equations

(a) Microscopic/Microstructural
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(i) Isotropic

Courtesy:
Á. Gómez,

Univ. Cantabria

(a) Microscopic/Microstructural
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A. Lakhtakia Types of Chirality
(a) Microscopic/Microstructural

(i) Isotropic

(ii) Faraday chiral

Frequency-domain constitutive equations

(iii)(iii)  Nonhomogeneous Nonhomogeneous VariantsVariants
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Linear
Bianisotropic 
Materials

(b) Macrostructural
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Dielectric Materials

Local Orthorhombicity



A. Lakhtakia Types of Chirality
(b) Macrostructural

http://www.mc2.chalmers.se/pl/lc/engelska/gallery/fingerprint.html http://www.lcd.kent.edu/images/4.htm

Twisted-grain polymer
morphology due to a
choleesteric LC host

Cholesteric LC with 
helical axis in the 
substrate plane
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Chiral sculptured thin film

(b) Macrostructural
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Isotropic Chiral Medium

NPV condition

4 wavenumbers

Plane waves
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Isotropic Chiral Medium

Negligible dissipation

2 NPV Conditions
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Isotropic Chiral Medium

  2 Beltrami modes

Both PPV 

Both NPV

Both IPV

1 NPV, 1 PPV

1 IPV, 1 PPV

1 IPV, 1NPV

Re[k] > 0

Re[k] < 0

Re[k] = 0

Planewave
propagation
in a specific
direction
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Isotropic Chiral Medium

Advantage:  Birefringence

Refraction can create two channels.
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Isotropic Chiral Medium

Advantage:  Birefringence

Refraction can create two channels.

Challenge: Can ξ be large enough 

so that

one channel is NPV,

the other PPV?
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Faraday Chiral Medium
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Faraday Chiral Medium

         Mixture of

ICM and magnetically biased ferrite
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Faraday Chiral Medium

Plane waves

Relative wavenumber

Direction of propagation

NPV condition



A. Lakhtakia 
Faraday Chiral Medium

ICM       Ferrite 

4 wavenumbers

NPV

3

4
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Macrostructurally Chiral
Medium
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Ferrosmectic Slab

Tilt Dyadic

Rotation (Helicity) Dyadic

h = +1 or -1
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Ferrosmectic Slab

        R                        R                       RRR LL RL

h = +1            Re[ε      ] > 0,  Re[µ      ] > 0a,b,c a,b,c

        R                        R                       RLL RR RL

h = +1            Re[ε      ] < 0,  Re[µ      ] < 0a,b,c a,b,c

+ rotate
slab by
180 deg
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Ferrosmectic Slab

Sign Reversal of Re[ε] and Re[µ]

Handedness Reversal of Chiral Structure

+ Rotation of slab by 180 deg



A. Lakhtakia 
Ferrosmectic Slab

Sign Reversal of Re[ε] and Re[µ]

Handedness Reversal of Chiral Structure

+ Rotation of slab by 180 deg

But that’s not the entire truth!



A. Lakhtakia 
Ferrosmectic Slab

Sign Reversal of Re[ε] and Re[µ]

Handedness Reversal of Chiral Structure

+ Rotation of slab by 180 deg

But that’s not the entire truth!



A. Lakhtakia 
Ferrosmectic Slab

Phase reversal - additional
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Conjugation Symmetry
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Assessment

Geometry (structure) is integral to complex materials.

Geometry begets chirality and anisotropy.

Question: How important are chirality and anisotropy?
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Assessment

Answer: Isotropic Chiral Materials
Faraday Chiral Materials

 Polarization adjustment 
like retro-rockets

Macrostructural Chiral Materials

 Polarization filtering
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Assessment

“Large” anisotropy is “easy” to design for
and achieve.

“Large” isotropic chirality is not “easy” to design for
and achieve.



Curl Enhancer
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Assessment

“Large” isotropic chirality is not “easy” to design for
and achieve.

Focus on nihility
   ε = 0, µ = 0




