

Metamaterials & Chirality

Akhlesh Lakhtakia

Department of Engineering Science & Mechanics Pennsylvania State University

1600 hrs, April 18, 2007 Department of Physics, Millersville University of Pennsylvania

ENGINEERING SCIENCE AND MECHANICS DEPARTMENT

ENGINEERED MATERIALS, STRUCTURES, DEVICES AND SYSTEMS

ESM – Engineering the Frontiers of Science

NANOSCIENCE AND

THE PENN STATE NANOFABRICATION FACILITY

Prof Fonash: Director Center for Nanotechnology Education and Utilization

CENTER FOR INNOVATIVE SINTERED PRODUCTS Director: Prof. Ivi Smid

BOEING AIRLINER COMPONENT: NIST-ATP, INDUSTRY, CISP: computer models for sintering 3D components formed using molding.

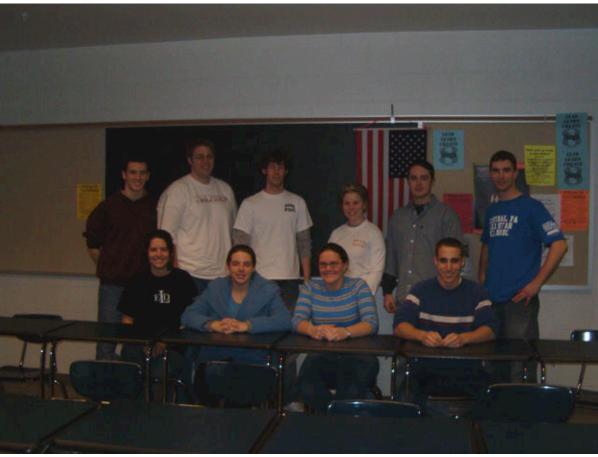
FACULTY/STAFF

- 20 Full Professors
 - 3 Chairs, 2 Professorships,
 4 Distinguished Professors
 - 8 Professors Emeriti
- 5 Associate Professors
- 3 Assistant Professors
- 10 Graduate Faculty (fixed term)
- Part-time instructors
- 10 Office Staff + 2.3 faculty support staff (centers and faculty support additional staff)

- Prof. Fonash: RECOGNITION, Electrochemical **Society**, for contributions to Dielectric Science and Technology
- **Profs. Bakis and Rose, Fellow ASME International** •
- **Prof. Hayek, Trente-Crede Silver Medal, Acoustical Society** of America
- Prof. Messier, Howard B. Palmer Faculty Mentoring Award, **PSES Outstanding Advising Award**
- Prof. Engel, ASEE Board of Directors
- Prof. Todd, VP Manufacturing, ASME; Franklin Institute **Committee on Arts and Sciences, CIC Fellow**
- **Prof. Zamrik, ESM Outstanding Alumnus** •
- **Prof. Pangborn, McKay Donkin Award**
- **Prof. Shaw, Executive Committee, NACE**
- **Profs. Costanzo, Gray, GE Learning Excellence Award** •
- Akhlesh Lakhtakia, Binder Endowed Professor ٠

STUDENTS

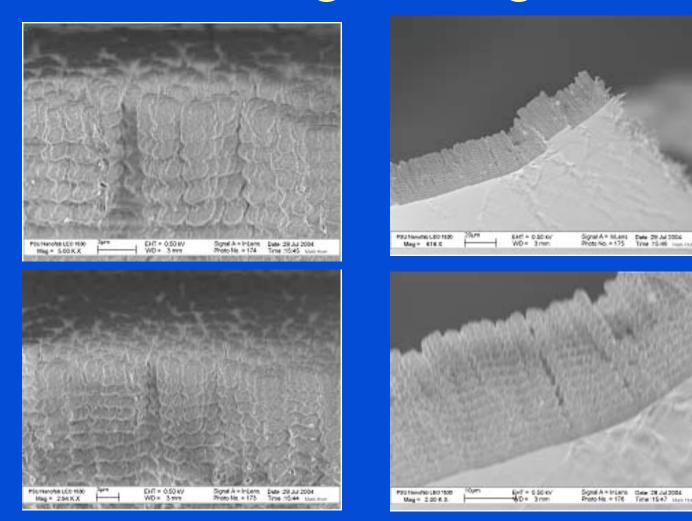
- ~100 UNDERGRADUATES (60-70 jr/sr)
- 116 GRADUATES (97M, 18F, 1M -6IGDP)
- 2002-03: 92 REFEREED PUBLICATIONS CO-AUTHORED BY STUDENTS


1. Develop new research, educational and outreach programs related to "Bio-nano Science and **Engineering**" in collaboration with the Materials Research Institute, **Huck Life Sciences Institute**, **College of Engineering, College of Science and Hershey Medical** Center.

2. Develop new research, educational and outreach programs related to "Systems Health Monitoring – for structures, systems and people" in collaboration with the College of Engineering, Applied Research Laboratory and Hershey Medical Center.

3. Develop a new "Center for Multiscale Wave-Materials Interactions" (CMWMI) and associated research, educational and outreach programs in collaboration with the Applied Research Laboratory, Electro-Optics Center, College of Engineering and Materials Research Institute.

- 4. Develop new recruitment strategies to attract faculty, graduate and undergraduate students and enhance our placement strategies for our students.
- 5. Enhance our development activities, corporate and alumni relations to increase support for key ESM initiatives.



Presented by the Engineering Science Undergraduate Student Council

What does Engineering Science do?

Penn State Engineering Science

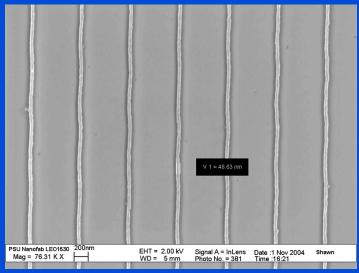

Sean Pursel uses a Scanning Electron Microscope (SEM) to view polymeric sculptured thin films

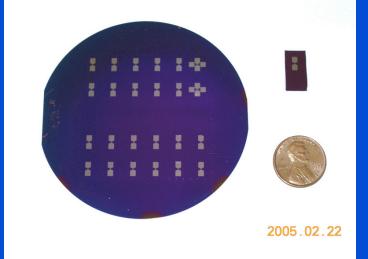
Engineering Science and Mechanics *engineering the frontiers of science* . . .

Alex Robinson simulates nitrogen molecules in collision, and examines how those molecules breakdown

Penn State Engineering Science

Gabrielle Tremblay creates visuals of fluid mechanics. These will be used in a DVD to teach other undergraduate engineers.


Engineering Science and Mechanics engineering the frontiers of science . . .

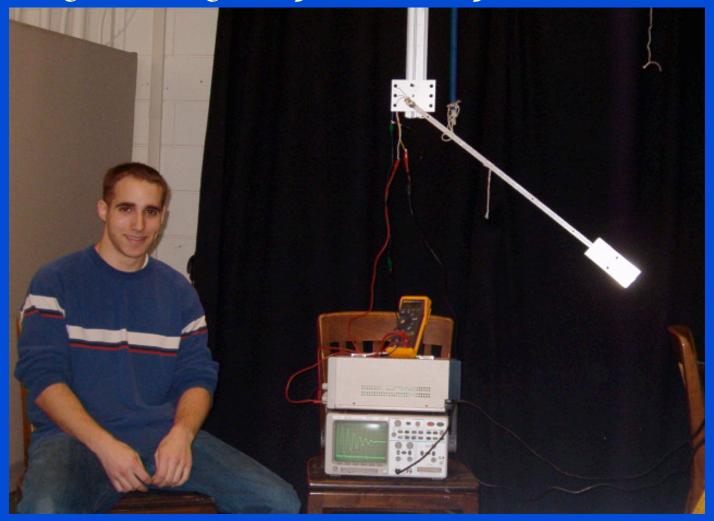


Jed Schober developed a new design for the rear suspension of a mountain bike. He is now building and testing that design.

Penn State Engineering Science

Myo Thein makes gas sensors that are based on nanowires.

Engineering Science and Mechanics engineering the frontiers of science . . .


Ryan Melnychuk is studying the absorption of laser light in metal powders.

Penn State Engineering Science

Tom Fina is searching for defects in the breech section of an army tank's gun barrel. To do this, he is using guided waves and ultrasonic technologies.

Engineering Science and Mechanics engineering the frontiers of science . . .

Brett Shapiro is studying the methods for a semiactive damping control system.

Noninvasive Insulin Delivery and Glucose Monitoring Using a Low-Profile Ultrasound Array

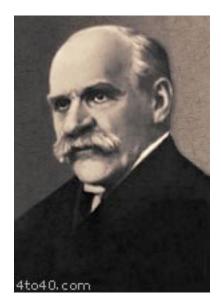
Penn State University, University Park

Shelby Fidler helps develop a new method of drug delivery

Penn State Engineering Science

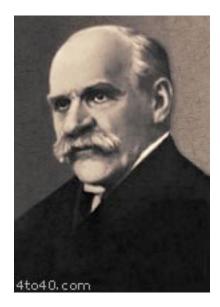
And yeah. . . we hang out too

What does Engineering Science do?


Whatever you want it to....

- Laser Absorption
- Fluid Visualization
- Material Testing
- Mountain bike suspension
- Sterling Engines

- Drug Transfusion
- Guided Waves
- Nanotechnology
- Thin Films
- Microscopy
- Etc. . . .


J.B.S. Haldane

The Creator, if he exists, has ...

J.B.S. Haldane

... an inordinate fondness for beetles.

... an inordinate fondness for beetles.

Engineers

have had an inordinate fondness

for

composite materials...

A. Lakhtakia

... right from the Bronze Age.

A. Lakhtakia

Composite Materials

Conspirator-in-Chief: Tom G. Mackay

School of Mathematics, University of Edinburgh

A. Lakhtakia

Frontiers of Materials Research

Evolution of *Materials Research Frontiers*

Material Properties (< 1970)

A. Lakhtakia

Evolution of *Materials Research Frontiers*

• Design for Functionality (ca.1980)

Evolution of *Materials Research Frontiers*

Design for System
 Performance (ca. 2000)

Multifunctionality

Thanks: Chuck Bakis

Multifunctionality

Performance Requirements on the Fuselage

- 1. Light weight (for fuel efficiency)
- 2. High stiffness (resistance to deformation)
- 3. High strength (resistance to rupture)
- 4. High acoustic damping (quieter cabin)
- 5. Low thermal conductivity (less condensation; more humid cabin)

Multifunctionality

Performance Requirements on the Fuselage

- 1. Light weight (for fuel efficiency)
- 2. High stiffness (resistance to deformation)
- 3. High strength (resistance to rupture)
- 4. High acoustic damping (quieter cabin)
- 5. Low thermal conductivity (less condensation; more humid cabin)

Future: Conducting fibers for

- (i) reinforcement
- (ii) antennas
- (iii) environmental sensing
- (iv) structural health monitoring
- (iv) morphing

Evolution of *Materials Research Frontiers*

- Material Properties (< 1970)
- Design for Functionality (ca.1980)
- Design for System Performance (ca. 2000)

Metamaterials

Metamaterials Rodger Walser

SPIE Press (2003)

Introduction to Complex Mediums for Optics and Electromagnetics

Editors: Werner S. Weiglhofer • Akhlesh Lakhtakia

 macroscopic composites having a manmade, three-dimensional, periodic cellular architecture designed to produce an optimized combination, not available in nature, of two or more responses to specific excitation

A. Lakhtakia

manmade

A. Lakhtakia

three-dimensional

A. Lakhtakia

periodic

cellular

designed to produce an optimized combination of two or more responses to specific excitation

not

available in nature

not

available in nature

D.G. Stavenga, Invertebrate superposition eye-structures that behave like metamaterial with negative refractive index, *JEOS-RP* **1**, 06010 (2006).

 macroscopic composites having a manmade, three-dimensional, periodic cellular architecture designed to produce an optimized combination, not available in nature, of two or more responses to specific excitation

Working Definition

A. Lakhtakia

- 'Metamaterial'
- composite which exhibits properties:
 - * not observed in constituents

or

enhanced relative to properties
 of constituents

Examples: Particulate Composite Materials with ellipsoidal inclusions

• Enhancement of group velocity

Enhancement of nonlinearity

Voigt wave propagation (degenerate eigenvectors)

Bianisotropy (e.g., Faraday chiral medium)

 Negative phase velocity (isotropy/anisotropy)

- Enhancement of group velocity
- Enhancement of nonlinearity
- Voigt wave propagation
- Bianisotropy
- Negative phase velocity

http://www.esm.psu.edu/~axl4/lakhtakia/documents/Mackay_06_6MRI.pdf

Composite Materials with Viscoelastic Stiffness Greater Than Diamond

T. Jaglinski,¹ D. Kochmann,² D. Stone,³ R. S. Lakes⁴*

We show that composite materials can exhibit a viscoelastic modulus (Young's modulus) that is far greater than that of either constituent. The modulus, but not the strength, of the composite was observed to be substantially greater than that of diamond. These composites contain barium-titanate inclusions, which undergo a volume-change phase transformation if they are not constrained. In the composite, the inclusions are partially constrained by the surrounding metal matrix. The constraint stabilizes the negative bulk modulus (inverse compressibility) of the inclusions. This negative modulus arises from stored elastic energy in the inclusions, in contrast to periodic composite metamaterials that exhibit negative refraction by inertial resonant effects. Conventional composites with positive-stiffness constituents have aggregate properties bounded by a weighted average of constituent properties; their modulus cannot exceed that of the stiffest constituent.

2 FEBRUARY 2007 VOL 315 SCIENCE

Negative Phase Velocity

material with n > 0

material with n < 0

Adapted from David Smith's website

What to make of it?

INSTITUTE OF PHYSICS PUBLISHING

Eur. J. Phys. 23 (2002) 353-359

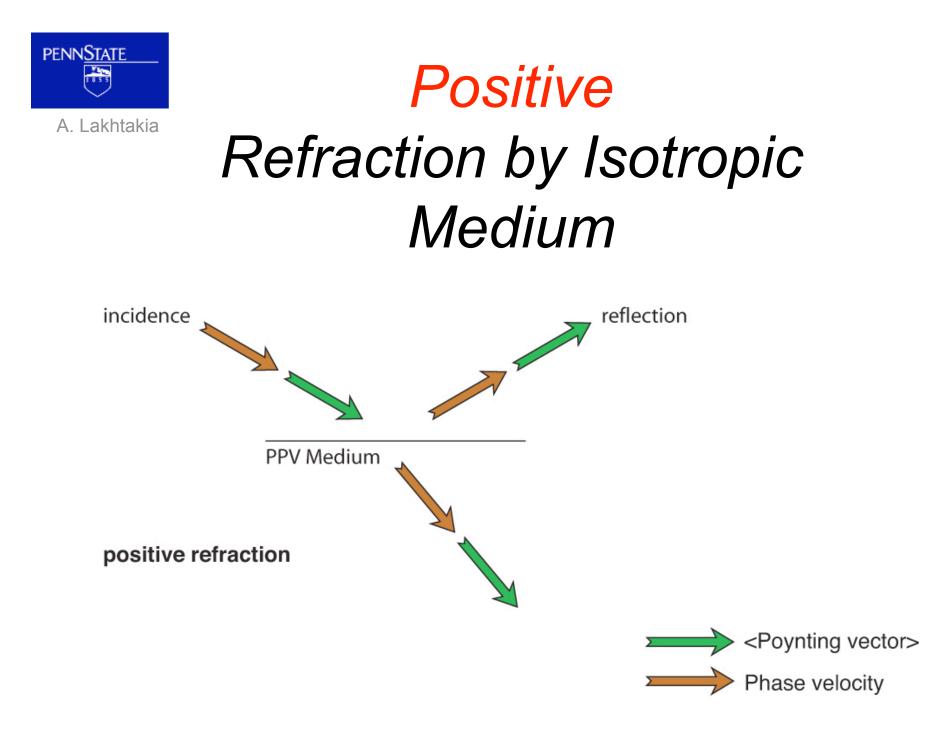
EUROPEAN JOURNAL OF PHYSICS

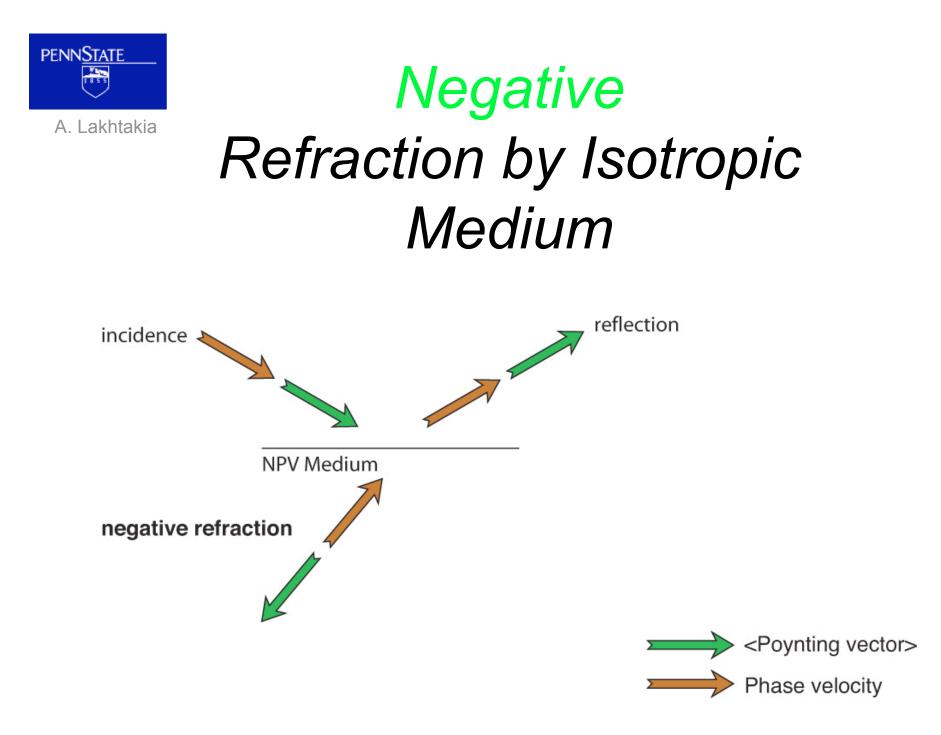
PII: S0143-0807(02)31789-6

The negative index of refraction demystified

Martin W McCall^{1,4}, Akhlesh Lakhtakia² and Werner S Weiglhofer³

Two Important Quantities


- Phase velocity vector
- Time-averaged Poynting vector
 = direction of energy flow & attenuation



Positive/Negative Phase Velocity Medium

Phase

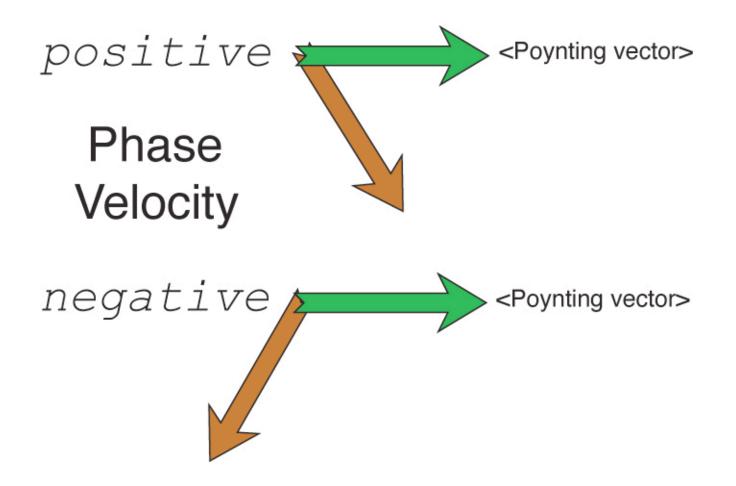
NPV in Simple Mediums

A. Lakhtakia

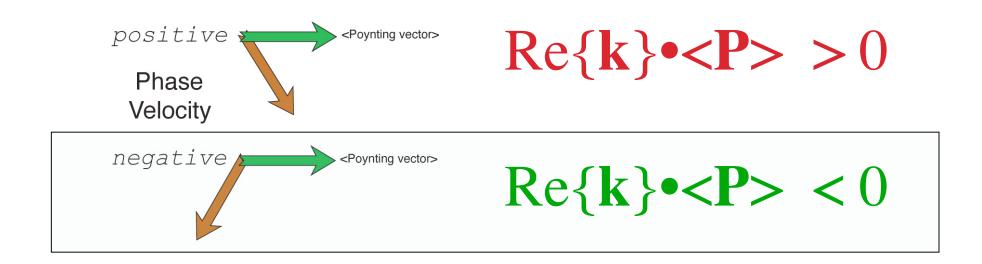
Phase Velocity

<Poynting vector>

PHYSICAL REVIEW E 69, 026602 (2004)


Plane waves with negative phase velocity in Faraday chiral mediums

Tom G. Mackay^{*} School of Mathematics, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom


Akhlesh Lakhtakia[†]

CATMAS — Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802-6812, USA (Received 18 July 2003; published 10 February 2004)

k = wave vector

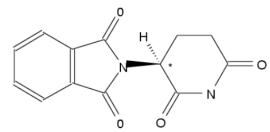
Chirality

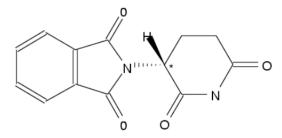
Types of Chirality

(a) Microscopic/Microstructural

(i) Isotropic $\underline{D}(\underline{r}) = \epsilon_0 \epsilon \underline{E}(\underline{r}) + i\sqrt{\epsilon_0\mu_0} \xi \underline{H}(\underline{r})$ $\underline{B}(\underline{r}) = -i\sqrt{\epsilon_0\mu_0} \xi \underline{E}(\underline{r}) + \mu_0 \mu \underline{H}(\underline{r})$

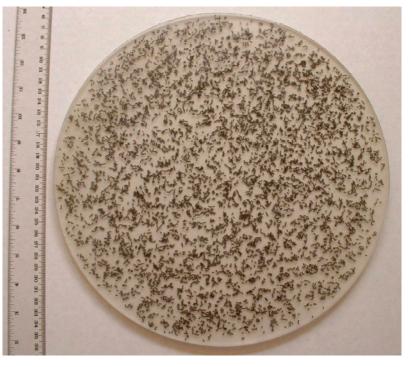
Frequency-domain constitutive equations




(a) Microscopic/Microstructural

(i) Isotropic

 $\underline{D}(\underline{r}) = \epsilon_0 \,\epsilon \,\underline{E}(\underline{r}) + i\sqrt{\epsilon_0\mu_0} \,\xi \,\underline{H}(\underline{r})$ $\underline{B}(\underline{r}) = -i\sqrt{\epsilon_0\mu_0} \,\xi \,\underline{E}(\underline{r}) + \mu_0 \,\mu \,\underline{H}(\underline{r})$



Enantiomère (S) : tératogène

Enantiomère (R) : Non-toxique

Courtesy: Á. Gómez, Univ. Cantabria

(a) Microscopic/Microstructural

(i) Isotropic

$$\begin{split} \underline{D}(\underline{r}) &= \epsilon_0 \, \epsilon \, \underline{E}(\underline{r}) + i \sqrt{\epsilon_0 \mu_0} \, \xi \, \underline{H}(\underline{r}) \\ \underline{B}(\underline{r}) &= -i \sqrt{\epsilon_0 \mu_0} \, \xi \, \underline{E}(\underline{r}) + \mu_0 \, \mu \, \underline{H}(\underline{r}) \end{split}$$

(ii) Faraday chiral

$$\begin{split} \underline{D}(\underline{r}) &= \underline{\epsilon} \bullet \underline{E}(\underline{r}) + \underline{\xi} \bullet \underline{H}(\underline{r}) \\ \underline{B}(\underline{r}) &= -\underline{\xi} \bullet \underline{E}(\underline{r}) + \underline{\mu} \bullet \underline{H}(\underline{r}) \end{split}$$
$$\\ \underline{\epsilon} &= \epsilon_0 \left[\epsilon \, \underline{I} - i\epsilon_g \, \underline{\hat{z}} \times \underline{I} + (\epsilon_z - \epsilon) \, \underline{\hat{z}} \, \underline{\hat{z}} \right] \\ \underline{\xi} &= i \sqrt{\epsilon_0 \mu_0} \left[\xi \, \underline{I} - i\xi_g \, \underline{\hat{z}} \times \underline{I} + (\xi_z - \xi) \, \underline{\hat{z}} \, \underline{\hat{z}} \right] \\ \underline{\mu} &= \mu_0 \left[\mu \, \underline{I} - i\mu_g \, \underline{\hat{z}} \times \underline{I} + (\mu_z - \mu) \, \underline{\hat{z}} \, \underline{\hat{z}} \right] \end{split}$$

(a) Microscopic/Microstructural

(i) Isotropic

$$\begin{split} \underline{D}(\underline{r}) &= \epsilon_0 \, \epsilon \, \underline{E}(\underline{r}) + i \sqrt{\epsilon_0 \mu_0} \, \xi \, \underline{H}(\underline{r}) \\ \underline{B}(\underline{r}) &= -i \sqrt{\epsilon_0 \mu_0} \, \xi \, \underline{E}(\underline{r}) + \mu_0 \, \mu \, \underline{H}(\underline{r}) \end{split}$$

(ii) Faraday chiral

$$\underline{D}(\underline{r}) = \underline{\epsilon} \cdot \underline{E}(\underline{r}) + \underline{\xi} \cdot \underline{H}(\underline{r})$$
$$\underline{B}(\underline{r}) = -\underline{\xi} \cdot \underline{E}(\underline{r}) + \underline{\mu} \cdot \underline{H}(\underline{r})$$

$$\begin{split} \underline{\underline{\epsilon}} &= \epsilon_0 \left[\epsilon \underline{\underline{I}} - i\epsilon_g \, \hat{\underline{z}} \times \underline{\underline{I}} + (\epsilon_z - \epsilon) \, \hat{\underline{z}} \, \hat{\underline{z}} \right] \\ \underline{\underline{\xi}} &= i \sqrt{\epsilon_0 \mu_0} \left[\xi \, \underline{\underline{I}} - i\xi_g \, \hat{\underline{z}} \times \underline{\underline{I}} + (\xi_z - \xi) \, \hat{\underline{z}} \, \hat{\underline{z}} \right] \\ \underline{\underline{\mu}} &= \mu_0 \left[\mu \, \underline{\underline{I}} - i\mu_g \, \hat{\underline{z}} \times \underline{\underline{I}} + (\mu_z - \mu) \, \hat{\underline{z}} \, \hat{\underline{z}} \right] \end{split}$$

(iii) Nonhomogeneous Variants

Frequency-domain constitutive equations

Types of Chirality (b) Macrostructural

$$\underline{D}(\underline{r}) = \underline{\underline{S}}(z) \cdot \left[\underline{\underline{\epsilon}}_{ref} \cdot \underline{\underline{S}}^{T}(z) \cdot \underline{\underline{E}}(\underline{r}) + \underline{\underline{\xi}}_{ref} \cdot \underline{\underline{S}}^{T}(z) \cdot \underline{\underline{H}}(\underline{r}) \right]$$
$$\underline{B}(\underline{r}) = \underline{\underline{S}}(z) \cdot \left[\underline{\underline{\zeta}}_{ref} \cdot \underline{\underline{S}}^{T}(z) \cdot \underline{\underline{E}}(\underline{r}) + \underline{\underline{\mu}}_{ref} \cdot \underline{\underline{S}}^{T}(z) \cdot \underline{\underline{H}}(\underline{r}) \right]$$

Linear Bianisotropic Materials

$$\underline{\underline{S}}_{x}(z) = \mathbf{u}_{x}\mathbf{u}_{x} + (\mathbf{u}_{y}\mathbf{u}_{y} + \mathbf{u}_{z}\mathbf{u}_{z})\cos\xi(z) + (\mathbf{u}_{z}\mathbf{u}_{y} - \mathbf{u}_{y}\mathbf{u}_{z})\sin\xi(z),$$

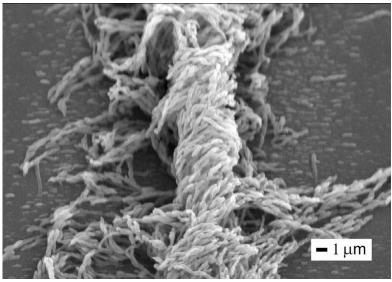
$$\underline{\underline{S}}_{y}(z) = \mathbf{u}_{y}\mathbf{u}_{y} + (\mathbf{u}_{x}\mathbf{u}_{x} + \mathbf{u}_{z}\mathbf{u}_{z})\cos\tau(z) + (\mathbf{u}_{z}\mathbf{u}_{x} - \mathbf{u}_{x}\mathbf{u}_{z})\sin\tau(z),$$

$$\underline{\underline{S}}_{z}(z) = \mathbf{u}_{z}\mathbf{u}_{z} + (\mathbf{u}_{x}\mathbf{u}_{x} + \mathbf{u}_{y}\mathbf{u}_{y})\cos\zeta(z) + (\mathbf{u}_{y}\mathbf{u}_{x} - \mathbf{u}_{x}\mathbf{u}_{y})\sin\zeta(z).$$

Types of Chirality (b) Macrostructural Dielectric Materials

$$\begin{aligned} \mathbf{D}(\mathbf{r},\omega) &= \epsilon_0 \underline{\epsilon}_r(z,\omega) \cdot \mathbf{E}(\mathbf{r},\omega) \\ &= \epsilon_0 \underline{\underline{S}}(z) \cdot \underline{\underline{S}}(\omega) \cdot \underline{\underline{S}}^T(z) \cdot \mathbf{E}(\mathbf{r},\omega), \\ \mathbf{B}(\mathbf{r},\omega) &= \mu_0 \mathbf{H}(\mathbf{r},\omega). \end{aligned}$$

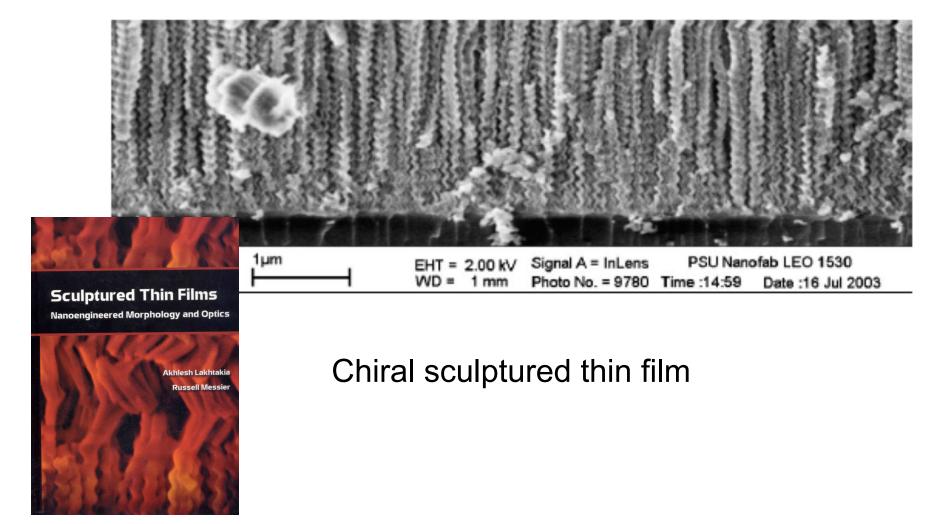
Local Orthorhombicity



(b) Macrostructural

http://www.mc2.chalmers.se/pl/lc/engelska/gallery/fingerprint.html

Cholesteric LC with helical axis in the substrate plane



http://www.lcd.kent.edu/images/4.htm

Twisted-grain polymer morphology due to a choleesteric LC host

Types of Chirality (b) Macrostructural

A. Lakhtakia

Isotropic Chiral Medium

A. Lakhtakia

$$\underline{D}(\underline{r}) = \epsilon_0 \,\epsilon \,\underline{E}(\underline{r}) + i\sqrt{\epsilon_0\mu_0} \,\xi \,\underline{H}(\underline{r})$$
$$\underline{B}(\underline{r}) = -i\sqrt{\epsilon_0\mu_0} \,\xi \,\underline{E}(\underline{r}) + \mu_0 \,\mu \,\underline{H}(\underline{r})$$

PLANE WAVES WITH NEGATIVE PHASE VELOCITY IN ISOTROPIC CHIRAL MEDIUMS

Tom G. Mackay

School of Mathematics University of Edinburgh James Clerk Maxwell Building King's Buildings Edinburgh EH9 3JZ, UK

120 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 45, No. 2, April 20 2005

A. Lakhtakia

PENNSTATE

1855

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0 \, \exp(ik\,\hat{\mathbf{k}}\,\boldsymbol{\cdot}\,\mathbf{r})$$
 Plane waves

$$\mathbf{H}(\mathbf{r}) = \mathbf{H}_0 \, \exp(ik \, \hat{\mathbf{k}} \cdot \mathbf{r})$$

NPV condition $\operatorname{Re}[\mathbf{k}] \cdot \langle \mathbf{P} \rangle < 0$

4 wavenumbers

$$k^{(i)} = -\omega\sqrt{\epsilon_0\mu_0}\left(\sqrt{\epsilon\mu} + \xi\right)$$

$$k^{(ii)} = \omega\sqrt{\epsilon_0\mu_0}\left(\sqrt{\epsilon\mu} - \xi\right)$$

$$k^{(iv)} = -\omega\sqrt{\epsilon_0\mu_0}\left(\sqrt{\epsilon\mu} - \xi\right)$$

$$k^{(iv)} = \omega\sqrt{\epsilon_0\mu_0}\left(\sqrt{\epsilon\mu} + \xi\right)$$

A. Lakhtakia

2 NPV Conditions

$$\operatorname{Re}\left\{\sqrt{\epsilon\mu} + \xi\right\} \times \operatorname{Re}\left\{\sqrt{\frac{\epsilon^*}{\mu^*}}\right\} < 0 \qquad \text{for} \qquad k = k^{(i),(iv)}$$

$$\operatorname{Re}\left\{\sqrt{\epsilon\mu} - \xi\right\} \times \operatorname{Re}\left\{\sqrt{\frac{\epsilon^*}{\mu^*}}\right\} < 0 \quad \text{for} \quad k = k^{(ii),(iii)}$$

 $\sqrt{\epsilon\mu} < -\xi$ for $k = k^{(i),(iv)}$

Negligible dissipation

$$\sqrt{\epsilon\mu} < \xi$$
 for $k = k^{(ii),(iii)}$

A. Lakhtakia

Planewave

propagation

in a specific

direction

2 Beltrami modes	
Both PPV	Re[k] > 0
Both NPV	Re[k] < 0
Both IPV	Re[k] = 0
1 NPV, 1 PPV	
1 IPV, 1 PPV	
1 IPV, 1NPV	

Advantage: Birefringence

Refraction can create two channels.

A. Lakhtakia

Advantage: Birefringence

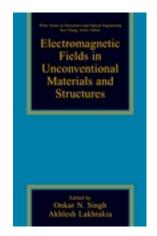
Refraction can create two channels.

Challenge: Can ξ be large enough

so that

one channel is NPV,

the other PPV?



A. Lakhtakia

Assessment

Assessment

- Anisotropy: the direction-dependent contraction of space and absorption
- Chirality: the twisting of space
- Nonhomogeneity: the redirection of energy into different directions by material interfaces
- Nonlinearity: the emission of absorbed energy at (generally) some other frequency

Geometry (structure) is integral to complex materials.

Geometry (structure) is integral to complex materials.

Geometry begets chirality and anisotropy.

Geometry (structure) is integral to complex materials.

Geometry begets chirality and anisotropy.

Question: How important are chirality and anisotropy?

A. Lakhtakia

Answer: Isotropic Chiral Materials Faraday Chiral Materials

Polarization adjustment like retro-rockets

Macrostructural Chiral Materials

Polarization filtering

"Large" anisotropy is "easy" to design for and achieve.

"Large" isotropic chirality is not "easy" to design for and achieve.

A. Lakhtakia

Curl Enhancer

"Large" isotropic chirality is not "easy" to design for and achieve.

Focus on nihility $\epsilon = 0, \mu = 0$

International Journal of Infrared and Millimeter Waves, Vol. 23, No. 6, June 2002 (© 2002)

AN ELECTROMAGNETIC TRINITY FROM "NEGATIVE PERMITTIVITY" AND "NEGATIVE PERMEABILITY"*

Akhlesh Lakhtakia

