
International Journal of  Infrared and Millimeter Waves, Vol. 13, No. 2, 1992 

GREEN'S FUNCTIONS AND BREWSTER CONDITION 
FOR A HALFSPACE BOUNDED BY AN 

ANISOTROPIC IMPEDANCE PLANE 

Akhlesh Lakhtakia 

Department of Engineering Science and Mechanics 
The Pennsylvania State University 

University Park, Pennsylvania 16802-1401 

Received November 12, 1991 

Dyadic Green's functions are obtained for a halfspace bounded 
by an anisotropic impedance plane. Using the Fresnel reflection 
coefficients, these functions are derived in planewave spectral 
forms. The Brewster condition is also obtained. 

1. Introduction 

In the magnetotelluric method [1-3], the electromagnetic surface 
impedance is measured at a number of frequencies. Some 
implementations of this  methods employ an airborne source of 
electromagnetic radiation [4]; indeed, even thunderstorms are 
utilized as sources [5]. In his formulation, Cagniard [1] assumed 
the surface impedance to be a scalar, as has been pointed out 
also by Spichak in his recent review paper [3]. However,  
geomorphological studies [e.g., 6] have shown anisotropic stress 
fields give rise to anisotropic consolidation of the subsurface 
region. This implies electrical anisotropy [7]: hence, the 
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anisotropic surface impedance that has been considered by 
Carcione et al. [8], and in detail by Negi and Saraf [9]. A simpler 
anisotropic impedance model has also been discussed by Groom 
and Bailey [10]. 

It is quite clear that the anisotropic surface impedance is 
definitely a function of frequency as well as the position on the 
terrestrial surface, and it implicitly contains geomorphological 
information. Analytical treatment of the ensuing complicated 
boundary  value problem may be s imply impossible.  
Nevertheless, insight is often gained by the analysis of 
simplified models, which thought provides the motivation for 
this communication. The objective here is to obtain a general 
formulation of the frequency-domain dyadic Green's function 
for a halfspace bounded by a plane whose impedance dyadic is 
independent of the position. This will be done using planewave 
spectral representations and the Fresnel reflection coefficients. 
As a bye-product of this analysis, the Brewster condition will 
also be obtained. 

2. D y a d i c  Green's  func t ions  

Let the upper halfspace z > 0 be occupied by free space (D = eoE, B 
= go H) and bounded by the anisotropic impedance plane z = 0. 
Along with an exp(-ic0t) time-dependence, the free space 
wavenumber  k 9 = c0~/(~toe o) and the intrinsic free space 
impedance 11o = "q(go/eo) are defined in the customary manner. 
Let the cartesian unit vectors be denoted by Ux, Uy and Uz. 

Since the source as well as the field points lie exclusively in the 
upper halfspace here, the electric field E(r) can be obtained from 
source current densities through [11] 

E(r) = ic0~t o H~ d3r ' __Ge(r,r') .J(r') - 
-III d3 , z, z' _> 0, (1) 

provided the dyadics Ge(r,r') and _Gm(r,r') are known; J(r) and 
K(r), respectively, are the source electric and magnetic volume 
current densities; r is the field point and r' is the source point. 
Although the impedance boundary condition is usually stated 
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in geophysica l  l i terature as the twin  relations [3] 

Ex(r) = Zxx Hx(r) + Zxy Hy(r), z = 0, (2a) 
Ey(r) Zy x Hx(r) + Zyy Hy(r), z = 0, (2b) 

w h i c h  can be cast also in the forms of admi t tance ,  magne t i c  or  
te l lur ic  b o u n d a r y  condi t ions ,  a hos t  of d e v e l o p m e n t s  in the 
e lec t romagnet ic  l i terature can be ut i l ized if the formula t ion  

UzX[UzXE(r)] = -TI o ~_*[uzxH(r)], z = 0, (3) 

is used  [12, 13]. Here  

= ~xxUxUx + ~xyUxUy + ~yxUyU x + ~yyUyUy, (4) 

is the no rma l i s ed  i m p e d a n c e  dyadic ;  ergo,  Zxx = Tlo~xy, Zxy = - 
~o~xx, Zy• = TIo~yy and  Zyy = - TIo~yx. W e  treat  the i m p e d a n c e  as 
i n d e p e n d e n t  of posi t ion r on the z = 0 plane. 

From Faraday 's  l aw and  (1), it follows that  

H(r) = VxHSd3r ' Ge(r,r')*J(r') - 
- Vx~S d3r ' _Gm(r,r')*K(r')/ic0~to, z, z" > 0; (5) 

therefore,  f rom (3) and  (5) w e  mus t  have  the condi t ions  

iC0goUzX[UzXGe(r,r')] = -~1o ~_*[UzX[VxGe(r,r')]], z = 0, (6a) 

a n d  

i(.0~oUz X [UzXSm(r,r')] -- -1] o ~* [UzX[VXGm(r,l')]], z = 0, (6b) 

satisfied for the correct  solution. 
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3. P l a n e w a v e  spectra l  d e c o m p o s i t i o n s  

Synthesis of the Green's dyadics can be accomplished through 
the partitions 

Ge(r,r') = Geo(r,r') + Ger(r,r'), (7a) 

and 

Gra(r,r') = Gmo(r,r') + Grra(r,r'), (To) 

where  only Get and Gmr take the impedance plane z = 0 into 
account. The dyadics  Geo and Gmo are the usual  free space 
Green's dyadics [11, 14], 

(8a) 

Gmo(r,r' ) = {VxI} exp(ikoR)/4nR, 

and 

(8b) 

which yield the solution of Maxwell 's  equations if the entire 
space (Iz] >- 0) were to be vacuous; R = r - r' and I is the identi ty 
dyadic. 

The partitions (7a,b) naturally point to a similar partition of the 
electromagnetic field in the upper halfspace; thus, 

E(r) = Eo(r) + Er(r), z -> 0, 

where  

Eo(r) = io)~t o J~ d3r ' _GGeo(r,r')*J(r') - 
-~f~ d3r' Gmo(r,~-)'K(r') 

(9) 

is the pr imary field that is radiated by the sources into free space 
without  taking any interfaces into consideration. In turn, this 
pr imary field is incident on the plane z = 0, thereby giving rise 
to the reflected field 

(10a) 
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Er(r) = iO~o SSS d3r ' Ger(r,r ') 'J(r ') - 
- SH d3r ' Gmr(rT~)~ z _> 0. (10b) 

Af te r  de f in ing  the  quant i t i es  

ko• = lcx Ux + ICy Uy -+ koz uz, 
to• lC J = - (1/lc)0c u x - !c x u ) = - k ~  x Po~/ko, Y y y 
po~{rx,lCy} = - (+-koz/lC ko)(~: x u x + gy uy) + (v./ko)u z = 

= ko+ x to• 
= 2 + Kv2), 

koz{~Cx,lCy} = +~](ko2 - lC2), 

t ha t  are f unc t i ons  of  t he  ho r i zon t a l  w a v e n u m b e r s  K x a n d  ~Cy, 
the  r igh t  h a n d  s ides of (8a) and  (8b) can be  set  d o w n  as [15] 

Geo(r,r') = - UzU z 8(R) + ( i /8~ 2) _ j ~ d l c  x _J~d~Cy (1/koz) 
[to• + Po+_Po• exp(i ko• (11a) 

a n d  

Gmo(r,r ' )  = - ( k o / 8 ~  2) _ ~ d ~ c  x _ ~ d l c y  (1 /koz)  
[po+to~- to+_Po• exp(i ko• R), (11b) 

respect ively.  In (11a,b), the  u p p e r  (resp. lower)  s ign is to be  t aken  
for z > z'  (resp. z < z'), and  z'  > 0 for this work ,  whi l e  8(R) is the  
Dirac de l ta  funct ion.  

Subs t i tu t ion  of (11a,b) in to  (10a) for z < z'  i m m e d i a t e l y  sugges t s  
tha t  t he  p r i m a r y  f ie ld  i n c i d e n t  on  the  in t e r face  z = 0 is a 
c o n t i n u o u s  s p e c t r u m  of p l ane  waves .  Hence ,  the  ref lec ted  f ie ld 
has  also to be a c o n t i n u o u s  s p e c t r u m  of p l ane  w a v e s  [16]. One  
can  t h e n  u s e  the  F re sne l  r e f l e c t i on  coef f i c ien t s  rtt{~Cx,~Cy} , 
rtp{lCx,~Cy}, rpt{lCx,~Zy} a n d  rpp{l~x,l~y } -- tha t  m u s t  be  func t ions  of  ~c x 
a n d  ~Cy as a resul t  of  Snel'~s- l aw -- to obta in  

Ger(r,r') = ( i /8~ 2) ._J'~dlc x ._~*~ (1/koz) 

[rtt to+to_ + rpt po+to_ +r tp  to+Po_ + rpp Po+Po-] 
exp(i ko+~ exp(- i  ko_~ z > 0, z '  > 0 

a n d  
(12a) 
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_G__mr(r,r') = - (ko/8X 2) ..~'*d~c x _..Jood~ (1/koz) 
[rtt po+t o_ - rpt to+t o_ + r~ Po+Po- - r ~  to+Po_] 

exp(il%+~ exp(-il%_~ z >_0,z' > 0. ( 2b) 

The only thing left at this stage is to ascertain the reflection 
coefficients rtt, etc., consistent with (6abb). It is parenthetically 
observed that in formalizing (12a,b), no assumptions have been 
made  regarding the electromagnetic properties of the lower 
halfspace, nor of the plane z = 0. 

4. Fresne l  R e f l e c t i o n  C o e f f i c i e n t s  

We n o w  cons ide r  the  spectral  d e c o m p o s i t i o n  of the  
e lect romagnet ic  field: for a specified hor izonta l  variat ion 
exp[i0cxx + ~Cyy)], we must  have 

E'(r) = [A to_ + B Po-] e x p ( i k o - ' r )  + 
+ [C to+ + D po+] exp(i ko+~ z > 0, (13a) 

and 

TIoH'(r) = [A Po- - B to_] exp( i  ko_or) + 
+ [C po+ - D to+] exp(i ko+or), z > 0, (13b) 

where  E' and H'  are the spectral fields consistent with Snel's 
law. The coefficients A and B can be interpreted as that of a 
p lanewave incident on z = 0, while the coefficients C and D 
denote the consequently reflected planewave. 

Enforcing the conditions (6a,b) is the same as enforcing 

E'x(r) = 11o [~xy H'x(r) - ~xx H'y(r)], z = 0, (14a) 

and 

E'y(r) = TIo [ ~  H'x(r) - ~yx H'y(r)], z = 0; (14b) 

thus, we obtain the Fresnel reflection relationships 
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C = rtt A + rtp B, D = rpt A + rpp B, (15a,b) 

by substituting (13a,b) in (14a,b), and then solving the resulting 
algebraic equations simultaneously.  The Fresnel coefficients 
work out as 

rtt = [ -  o~ z (1 - ~1)  + cz~2 (O~z2~yy - ~xx) + 

+ 0~y 2 (0Cz2~x x -- ~yy) -- 0~xff.y (1 + az2)(~xy + ~ y x ) ] / A ,  (16a )  

rtp= 2C~z [O~x2 ~yx- O~y2 ~xy + ocxoty (~.- G)]/a, (16b) 

rpt = -2O~z [O~x2 ~xy- 0Cy2 ~yx + 0CxOq / (~yy- ~xx)]/A, (16C) 

rpp = [c~ z (1 - ~1) + OCx2 ((zz2 ~yy - ~ )  + 

+ 0~y 2 (0Cz2~x x -- ~yy) -- ff.x0Cy (1 + O~z2)(~xy + ~yx)]/A, (16d) 

where o~ x = lCx/~C, oqj = lcy/lc, c~ z = koz/ko, I_~1 = G ~ y y -  ~xy~yx, and 

A = c~ z (1 + I_~1) + r 2 (CCz2~yy + G 0  + 
+ OCy 2 (O~z2~x x + ~yy) + OCxO~y (1 - 0~z2)(~xy + ~yx)" (17) 

With these coefficients substi tuted into (12a,b), we have the 
dyadic  Green's  functions for a halfspace bounded  by an 
anisotropic impedance plane. 

Before continuing further, an interesting relation between the 
Fresnel coefficients is worth pointing out: 

[rpp- rtt]/[1- rt t  rpp + % rp~] = (1 - ~ 1 ) / ( 1  + El), (18) 

Note should be made  that  the r ight hand  side of (18) is 
independent  of the wavenumbers ,  being solely dependent  on 
the determinant of the normalised surface impedance dyadic ~. 
In a manner ,  (18) extends a similar  re la t ionship found  
elsewhere for the interface of two isotropic dielectric-magnetic 
media [17]. 
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5. B r e w s t e r  C o n d i t i o n  

The developments in the previous section can be utilized to 
give us a bonus result. This refers specifically to what is known 
as the Brewster angle [14, 18]. 

In a series of communications [19, 20, and references cited 
therein], the concept of the Brewster angle has been 
considerably enlarged into the Brewster condition, which is 
actually faithful to Brewster's original report [18]. Briefly, the 
Brewster condition arises when the reflection ratio C /D in 
(13a,b) becomes independent of the incidence ratio A/B. 

From (15a,b) it is clear that C/D becomes decorrelated from the 
ratio A/B, provided lc x and icy are such that 

rtt rpp = rtp rpt, (19) 

or, equivalently, 

0 = - ~ (1 + I~1) + CZx2 (O~z2~yy + ~xx) + 
+ O~y 2 ((~z2~xx + ~yy) + OLxO~y (1 - 0~z2)(~xy + ~yx)" (20) 

Equation (20) constitutes the Brewster condition for a halfspace 
bounded by an anisotropic impedance plane, while the 
particular doublet {lCx, icy} that leads to the satisfaction of (20) 
should be called the Brewster wavenumber doublet. As a 
corollary, it follows from (18) that 

rn~-  rtt = (1 - ~1)/(1 + ~1) (2~) 

when the Brewster condition is satisfied. 
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