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The Richardson similarity dimension of a truly self-similar and square-integrable function of one
variable is shown to be 3/2. This implies that many supposedly ‘self-similar’ functions of physical
provenances are actually not so. Instead, such functions may be approximated well by truly self-
similar, but non-square-integrable, functions in some restricted ranges of the independent variables.

Fractals became ubiquitous in science and technology libraries during the 1980s. The
Hausdorff Besicovitch dimension of a fractal must exceed its topological dimension by
definition ([1], p. 16). The Hausdorff Besicovitch dimension is difficult to obtain rigorously
for many mathematical problems, not to mention for problems that derive from investiga-
tions of natural processes. However, there is the idea of a similarity dimension available
for the self-similar fractals commonly studied. Mathematicians often use the similarity
dimension to guess the Hausdorff Besicovitch dimension ([1], p. 37), but physicists and
engineers are normally content simply to obtain the similarity dimension [2,3]. Indeed, the
similarity dimension is so often invoked that reports on ‘observations’ of self-similarity in
nature are spread all over the scientific literature of the past 10 years [3,4]. Catalysis [5],
fracture toughness of metals [6], fluid dynamics [7], aerogels [8], multi-phase materials [9],
geography [10] and architecture [11], are only some of the areas of scientific research in
which self-similarity has been ‘found’.

The rationale behind these types of studies is as follows: Let 4(x;a) be a self-similar
function of x with a scale @ > 1 such that

h(a"x;a) = b"h(x;a); —0o < x < oo,n=0,%1,42,.... (1)

where b is some constant. Specifically, h(ax;a) = b h(x;a), and it leads to the solution
(ref. 1, p. 36)

h(x;a) =x'~P (2)

provided
b=a'""? (3)

D being the Richardson similarity dimension of A(x;a). But the solution provided by
Equation 2 is deceptive: It is easy to see that h(px;a) = p' =P h(x;a) is a consequence of
Equation 2 for all p ¢ {—o00,00}, and can make it appear to some that a self-similar
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function merely expresses a power law. In contrast, Equation 1 would suggest that the
relation i(px;a) = p' =2 h(x;a) is true only if p = a".

A self-similar process is not a power-law process [12]. Nevertheless, the mode in which
investigations on suspected self-similar processes are carried out is often precisely the same
as that for suspected power-law ones (see €.g., [5,6,9]). Computed or measured values of
the dependent variable 4 are plotted against the discrete values x,, of the independent
variable x on a log-log graph for x;; < xn < xg5. Then, the data points are fitted, if
possible, onto a straight line whose slope is equal to (1—D), but the scale a remains
undetermined in such studies.

Of course, the collected data are sparse because —co < X;, and x5 < oo, and in many
instances hardly more than three cycles on the abscissa of the log-log graph are used. The
data windows used are so severely restricted (see, for instance, [13,14]) that the term ‘self-
similar’ often allocated to the investigated processes appears to be unjustified and leads to
the following question: What types of square-integrable functions are truly self-similar for
all x? The requirement of square-integrability of a function n({), i.e.,

0< jdcm(w <o (4)

is necessary for physical relevance, because [n(()[? is often taken to be proportional to
energy density in the physical sciences.

Let the square-integrability condition, Equation 4, be imposed on the self-similar
function A(x;a) defined by Equation 1. Then,

o0 . [o 0] o0
E= j dx | hx;a) = a j dy | h(ay;a) P= ab? J dy |hy;a) P=ab? E  (5)

which can be true for a finite non-zero E only if

1/a = b* (6)
But the relationship, expressed by Equation 3 holds for self-similar functions, and the joint
solution of Equations 3 and 6 is given by

D=3/2 (7)
The upshot of this simple analysis is the answer to the question posed earlier. All square-

integrable and truly self-similar functions have a Richardson similarity dimension D = 3/2
and satisfy the relation

he(ax;a) = '~ D hg(x;a) = aPhg(x;a); a>1, —co <x< 0 (8)

Let H be the set of all functions satisfying Equation 1 and H be the set of all functions
satisfying Equation §, i.e.,
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H = {h(x;a) s.t. h(ax;a) = a' ~ 2 h(x;a); a> 1, ~c0 < x <00, —00 < D <00} (9)

Hg = {he(x;a) s.t. hg(ax;a) = a='/? hg(x;a); a> 1, —o0 < x < o0} (10)

Then, Hg is a subset of H because
Hg = {h(x;a) s.t. h(ax;a) = a'™P h(x;a) and

0<de|h(x;a)|2<oo;a>l, —00 < x <00, —00 < D < oo} (11)

These comments have a bearing on suspected self-similar functions that have physical —
as distinct from mathematical — provenances. It can be easily gathered from physics
literature that the estimates of the Richardson similarity dimensions of supposedly self-
similar functions of one variable are rarely equal to 3/2. Moreover, while D is estimated
from a narrow data window, the scale a remains usually undetermined. Finally, fractal-to-
compact transitions have been observed and reported [15,16].

With the foregoing considerations in mind, I conjecture that the characteristics of the
actual function f{x) that is probed in any one of these studies are as follows:

o0
(i) It possesses finite energy, i.e., 0 < [ dx | f{x) |* < oo.

(ii) It appears to be self-similar within a restricted range: i.e., f{x) = A(x; a) for xj; < x <
xg, where h(x, a) € H, —00 < xjp and x5 < 0o0.

Condition (i) reiterates the physical underpinnings of f(x). Condition (ii) allows f{x) to
appear to have a Richardson similarity dimension other than 3/2 if f{x) is investigated
within an appropriate range of the independent variable x. Indeed, condition (ii) allows
f(x) to have different values of D in different x-ranges of finite widths, in which case f{x)
may be dubbed multifractal in current parlance. Similar conclusions may be drawn for
physical functions of more than one independent variables.
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