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The existence of a Brewster wave number is demonstrated for the case of plane-wave reflection 
by a specularly smooth, planar interface joining two homogeneous, linearly elastic, isotropic 
solid half-spaces. Such a wave number is numerically shown to exist for two material 
combinations: steel-aluminum and steel-brass. The wave number can be such that plane waves 
are either propagating or evanescent. Since the calculated Brewster wave number is not 
dependent upon which of the two half-spaces contains the incident plane waves, it appears to be 
an intrinsic property of the bimaterial interface and hence may be useful in the characterization 
of such interfaces. 

PACS numbers: 43.20.Fn 

INTRODUCTION 

The discovery of the Brewster angle in 1812, coming at 
the heels of Malus' discovery of polarization in 1810, did 
much to establish the transverse nature of light in the next 
20 years. By extensive experimentation on specularly 
smooth interfaces of air and isotropic dielectric substances, 
Brewster found that when unpolarized light is incident at a 
specific angle with respect to the normal to the interface, 
the reflected light is linearly polarized. This specific angle, 
later named after Brewster, is such that its tangent equals 
the refractive index of the dielectric material. 

The method of polarization by reflection became an 
important tool for designers of optical instruments. 1 How- 
ever, it appears that the use of semitransparent mirrors in 
lasers lead to a change in the definition of the Brewster 
angle. This new definition represented a weakening of un- 
derstanding of the Brewster phenomenon, as has recently 
been cataloged by Lakhtakia. 2 As the original concept is 
pregnant with meaning, a return to the pre-World War II 
definition appears desirable; indeed, a number of theoreti- 
cal exercises have ended up in the postulation of the idea of 
the Brewster wave number. 3 

The Brewster wave number can be explained as fol- 
lows: Let the plane z=0 be the interface between two 
linear, homogeneous, nondiffusive electromagnetic sub- 
stances. Further, let all fields be independent of the y co- 
ordinate and have an e iKx dependenceon the x coordinate. 4 
From either half-space there can be two different plane 
eigenwaves incident on the interface while there will also be 
two plane waves reflected into that half-space. If K equals 
the Brewster wavenumber for that interface then, (i) the 
ratio of amplitudes of the reflected plane eigenwaves is 
independent of the ratio of amplitudes of the incident plane 
eigenwaves, and (ii) condition (i) is satisfied regardless of 
incidence from the upper or lower half-spaces. It should be 
noted that the simpler definition of the Brewster angle is 
totally contained in that of the more meaningful Brewster 
wave number. 

The mathematical unity between electromagnetics and 
elastodynamics 5 has prompted us to ask: Does the Brews- 

ter wave number exist for the scattering of elastic plane 
waves by planar solid/solid interfaces? 

Plane waves of three types can exist in a homogeneous, 
linearly elastic, isotropic solid. Of these, the longitudinal 
(P) and the vertically polarized (SV) plane waves are 
coupled to one another at the interface z= 0, but the hor- 
izontally polarized shear wave (SH) is decoupled from the 
others. Thus the Brewster phenomenon at the planar bi- 
material interface of two linear isotropic solids can involve 
only the P and the $V plane waves. This situation is 
roughly parallel to that in electromagnetics, and the results 
of our investigation are the focus of this report. 

I. ANALYSIS 

Consider plane, time harmonic longitudinal (P), and 
transverse ($V) waves, simultaneously incident from me- 
dium I onto the plane interface z=0 joining two rigidly 
bonded, homogeneous, isotropic, and linearly elastic half- 
spaces, I and II (Fig. 1 ). Being isotropic, the half-spaces 
are fully characterized by their Lam• constants, ,[I,/•I, 2n, 
/t u, and their mass densities, pl and pll. Consistent with 
the governing differential equation, 

/xV•u + (•t +/x)VV. u=P ata , ( 1 ) 
the incident P and S V displacement fields can be expressed 
as 

i [/C•--(•] kx--i• I 
up=Ap[•]e e ?, z>/O, (2a) 

us '/Is k e e ?, z>/0, (2b) 
where K is the horizontal wave number which, according to 
Snell's law, must be the same for all of the incident, re- 
flected, and refracted plane waves. All fields are assumed to 
vary with time as e -iø't, which has been omitted for brevity. 
The vertical wave numbers are defined by •,s = + 
-- K2] ,•/:, where kl• and kls are the propagation constants of 
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FIG. I. Reflection of plane longitudinal (P) and transverse (SV) waves 
from the plane interface joining two, rigidly bonded, homogeneous, iso- 
tropic and linearly elastic half-spaces. 

the longitudinal and shear waves in medium I, respectively. 
A real •c smaller than k• (or k]) ensures that the P (or SV) 
wave is propagating, whereas a • larger than k• (or 
corresponds to an evanescent P (or $V) wave. 

Both incident plane waves will give rise to reflected P 
and $V waves, the displacement fields of which can be 
written as 

•ci+8 • 

u•=B, k, s ]d"Xe'ø•, z>O. (3b) 
Transmitted fields will, of course, also be generated in 

the second half-space, but transmission is not of sufficient 
interest here to warrant further discussion. The (possibly 
complex) amplitudes of the reflected fidds Bp, B s can be 
written in terms of those of the incident fields .4•,, A s most 
conveniently in matrix form as 

Bs =[,% (4) 
where Rm• denotes the reflection factor of mode a duc to 
incidence of mode fl. Explicit expressions for these factors 
can be found in Reft 7. Each of the four reflection factors 

R,,t• can be obtained as the ratio of two 4 X 4 determinants 
whose elements depend on • as well as the material prop- 
erties of the two media. 

If the P and SY plane waves are incident from the 
lower medium (II), equations analogous to Eqs. (2) and 
(3) are obtained where the operative propagation con- 
stants are k• • and kts •, with vertical wave numbers Sp u and 
6• •, respectively. In this case, the relationship between the 
reflected amplitudes B•,, B• and the incident amplitudes.4•, 
/l s can be written as 

As follows from Chenfi and discussed by Lakhtakia, 3 
the ratio of the reflected amplitudes B,,,/B.• (or B,[.,,/B•.) is 

TABLE I. Material properties ustd in numerical runs. 

,i, /• p 
Material [OPa] [GPa] [g/m •] 

Aluminum 55.3 26.0 2.7 

Brass 89.2 34.0 8.5 

Ineonel 120.3 74.7 8.3 

Plexiglas 5.4 1.3 I. 1 
Steel I 11.8 79.9 7.8 

independent of the ratio of the incident amplitudes Ap/A s 
(or A•/A•) if, for some wave number •, the conditions, 

arc satisfied. 

That this is the case can be sccn if one writes the 

rcfiect• amplitude ratio in the form, 

s-rl+Ya/ (7) 
where Y=R•R•,,Y' =R,•R•, and A has been defined as 
the incident amplitude ratio, •/•s- It is seen that i[ Y= Y' 
for some gI, then the reflected amplitude is independent of 
A and, in fact, equals R•,(gt)/R•(g • ). Note that the con- 
dition Y=Y' is preci•ly •1. (6a). Similar considerations 
lead to Eq. 6(b). 
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FIG. 2. Plots of (a) IR•R•--R,3zl, and (b) Ir•r•p--r, prp, I for the 
steel-aluminum combination. In (it) incidence is from the steel side. in 
(b) incidence is from the aluminura side. 
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FIG. 3. Plots of (a) IR•Rpp--R s•,Rp•l, and (b) Ir.%-r•/•.,I for the 
steel-brass combination. In (a) incidence is from the steel side, in (b} 
incidence is from the brass side. 

Depending on which half-space contains the incident 
fields, we thus have a Brewster condition which, when sat- 
isfied, implies that the ratio of reflection amplitudes is com- 
pletely decorrelated from the ratio of incidence amplitudes. 
In the numerical examples to be discussed next, it has been 
found, in accord with the findings of the analogous prob- 
lem in electrodynamics, 3 that the conditions (6a) and (6b) 
are equivalent, and that, at least for the real roots found, 
K I • K II. 

II. NUMERICAL EXAMPLES 

The conditions (6a) and (6b) were evaluated for three 
material combinations, steel-aluminum, steel-brass, and 
Plexiglas-Inconel. The material properties used for each 
material are given in Table I. For each bimaterial config- 
uration, incidence of P and S V waves were considered 
from both half-spaces. Figures 2-4 are plots of the magni- 
tude of the quantities on the left-hand sides of Eqs. (6a) or 
(6b), denoted by I RI and I rl, respectively, as a function 
of the horizontal slowness, •=K/tO. Physically, case (a) in 
each figure corresponds to incidence from the upper half- 
space, whereas case (b) corresponds to incidence from the 
lower half-space. 

As can be seen, Eqs. (6a) and (6b) are identical con- 
ditions for each of the three cases. Furthermore, there ex- 
ists, for the steel-aluminum and steel-brass combinations, 
a • satisfying the requirements (6a) and (6b) sirnulta- 

FIG. 4. Plots of (a) IR•Rpp--R 5aRpsI, and (b) ]rs•r•p--rs•rp• [ for the 
Plexiglas-Inconel combination. In (a) incidence is from the Plexiglas 
side, in (b) incidence is from the Inconel side. 

neously. A root finding subroutine, available from the 
IMSL Fortran libraries, was used to locate precisely these 
roots which were found to be: gI--•I=0.332/.ts/mm and 
g•=•I----0.149/zs/mm for the steel-aluminum and steel- 
brass cases, respectively. No real roots were found in the 
range 0.001 /ts/mm•<g<l.2 /ts/mm for the Plexiglas- 
Inconel case. 

It is interesting to note that the g found for the steel- 
aluminum configuration is such that all modes are evanes- 
cent, whereas the g found for the steel-brass case is such 
that all modes are propagating. The latter case is therefore 
more amenable to experimental verification. Furthermore 
that no values of the Brewster wave number was found (in 
the indicated range) for the Inconel-Plexiglas case is not 
surprising. In the electromagnetic case, the possibilities of 
none 9 or two 1ø Brewster wave numbers have been reported. 

III. CONCLUSIONS 

The possible existence of a Brewster wave number has 
been demonstrated for two material combinations, and it 
has been shown that the Brewster wave number can be 

such that plane waves are either propagating or evanescent. 
Brewster angle spectroscopy has recently been found to be 
an important tool for characterizing defect levels in semi- 
conductors) • In elastodynamics, it is quite possible that 
the concept of Brewster wave number may find application 
in the nondestructive characterization of interfaces since it 
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appears to be an inherent characteristic of the bimaterial 
interface joining the two media, but not dependent upon 
which medium contains the incident fields. 
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