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General schema for the Brewster conditions
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General schema for the Brewster conditions. A matrix-based
treatment of planewave reflection at general bimaterial inter-
faces has been used to obtain the Brewster conditions for the
planar interface of two Lorentz-covariant media. There are
two such conditions obtained, one for each half-space con-
 taining the incident planewave; this is remarkable since both
Brewster conditions have turned out to be identical for all of
the specific bimaterial interfaces examined in the past.

_ Allgemeine Darstellung der Brewster-Bedingungen. Einc Be-
handlung der Reflexion von ebenen Wellen an Ubergingen
zweier Materialien wird fiir den Erhalt der Brewsterbedin-
gungen mittels Matrizen fiir planare Schnittstelien Lorentz-
invarianter Medien durchgefihrt. Es wurden zwei solcher
Bedingungen erhalten, je cine fir jeden eme einfallenden
Planwelle enthaltender Halbraum; dies ist insbesondere be-
merkenswert, da beide Brewster-Bedingungen sich als iden-
tisch fiir alle der in der Vergangenheit untersuchten spezifi-
scher Ubergange zweier Materialien erwiesen haben.

Introduction

Around the end of the year 1812, Sir David Brewster had
been successful in a series of experiments that elucidated
the nature of polarized light. In particular, he had de-
duced the incidence condition for polarization by reflec-
tion: when unpolarized light is incident on an optically
smooth, planar, air-dielectric interface at a certain angle
with respect to the normal to the interface, the reflected
light is completely polarized [1]. This particular angle
came to be known as the Brewster angle, and the phe-
nomenon has been widely utilized in the construction of
Brewster polarizers [2].

It appears that during the 1950s, the definition of the
Brewster angle changed from being a polarizing angle to
that of a zero-reflection angle, at least operationally {3],
the correct definition being found only in a few modern
textbooks [e.g., 4]. Yet the correct definition is very pow-
erful; indeed, it is pregnant with meaning [5] when com-
pared with the sterility of the upstart zero-reflection defi-
nition.

Impelled by this driving force, the author has in the
recent past investigated a Brewster condition for several
planar bimaterial interfaces [5—11]. The investigations
detailed in [5—-11], however, suffer from one common
defect: they are specific to the electromagnetic natures of
the continua (material or vacuous) occupying the two
halfspaces separated by the planar interface. It is quite
clear, therefore, that though these studies have been help-
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ful in stimulating thought, the conclusions drawn there-
from cannot be considered general enough, bearing the
numerous varieties of electromagnetic continua possible
[12] in mind.

The requirement of sufficient generality imposes a
strain that can be handled only with a sufficiently power-
ful analytical procedure: this is provided by the Jones
calculus so commonly used in optical system design [13,
14], but which has begun to be investigated thoroughly
only recently [15—21] for more general material systems.
In this communication matrix calculus is utilized to set
up the electromagnetic fields on either side of a planar
interface, the two halfspaces being assumed to be occu-
pied by homogeneous, non-diffusive, linear bianisotropic
media that are required for Lorentz-covariant represen-
tations of fields in continua [12]. In this fashion is ob-
tained a general schema for the Brewster conditions.

Homogeneous Lorentz-covariant continua

By requiring that all field equations be generally covari-
ant, Post [12] obtained constitutive equations for spatial-
ly local, linear, non-diffusive, homogeneous materials. In
the frequency domain [exp (— iwt)], these relations can

be specified as
D=¢,-E+ap-B, H=5b,-E+m;'-B, (la,b)

in which ep, etc., are three-dimensional cartesian tensors
of the second rank or dyadics, while m, ! is the inverse of
m,. Relations (1a,b) are not very convenient for the
satisfaction of boundary value problems, which require
the continuities of the tangential E and the tangential H
fields; therefore, by making the transformation

{e=ep—ap Mp-bp,a=ap -my,

b=—mp-bpy,m=mp}, )
we obtain the equivalent Tellegen representation [22]

D=¢-E+a'H, B=b-E+wm-H, (3a,Db)

that is more appropriate for the present purposes.
We begin the source-free Maxwell curl postulates

VxE=ioB, -V xH=ioD, (4a,b)

and without any significant loss of generality, substitute
the spatial Fourier decomposition [23]

E(x, y,z) = e(z) exp(ikx), (5a)
H(x,y,z) = h(z)exp(ixx), (5b)

along with (3a, b) in (4a, b). Here, « is a real number to
be used later in order to ensure the satisfaction of Snel’s
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law across the z = 0 interface, while
e(z)=e2)u, +e,()u,+e(Du,, (6a)
h(z)=h(Du, +h@2)u, +h()u,, (6b)

with u,, u, and u, being the cartesian unit vectors.
These manipulations result in two algebraic equations,
viz.,

e, (z) = (w/x)u, - [b-e(z) + m- h(z)], (7a)
hy(z) = — (w/K)u, " [e* e(z) + a- h(2)], (7b)
and the four differential equations,
{d/dz} e (2) = ike,(z) + iwu,* [b-e(z) + m- h(z)], (8a)

{d/dz} e,(z) = — iwu, - [b-e(z) + m-h(z)], (81b)
{d/dz} h(z) = ikh,(z) — iou, e e(z) + a- h(z)], (8¢)
{d/dz} hy(z) = iwu, - [e-e(z) + a- h(z)], (84d)

Assuming that (7a) and (7b) are linearly independent
when e,(z) and h,(z) are the two unknowns, and substitut-
ing their consequent solution into (8 a—d), we obtain the
matrix differential equation

{d/dz} [f(2] = i [P1[f(2)], o)
in which
[f(2)] = column [e, (2); e,(2); h,(2); h,(2)] (10)

is a column 4-vector, while [P] is a 4 X 4 matrix that
depends on e, a, b, m and «.

It is the eigenvectors of [P] that interest us. Since [P] is
a 4 x 4 matrix, we invoke 4 linearly independent eigen-
vectors [y,.], (m = 1, 2, 3, 4) such that

(Pllyn] = }*m [Vm]l, m=1, 2,3,4, (11)

where the 1, are the corresponding eigenvalues of [ P]; the
invocation can be done from purely physical arguments.
It is not necessary that [P] have all of its eigenvalues
distinct; instead, it is necessary and sufficient [24, 25] to
have four linearly independent eigenvectors in order to
diagonalize [P].
The solution of (9) can be obtained as [20]
(@] = [GI L@ G [f0)], (12)

where the columns of the 4 x 4 matrix [G] are the eigen-
vectors [y,,] arranged as per

[G] = [[71]; [721; 73} Ival] s (13)
while [L(z)] is the diagonal matrix
[L(z)] = diagonal [exp (i1, z); exp (i 4, z);
exp(id;z);exp(idyz)]. (14)
Since this medium must allow wave propagation in all
directions, and because the constitutive tensors can be set

down in biaxial forms, we can order the eigenvalues such
that

Real {4,} >0,
Real {4,} <0,

for what follows.

Real{1,} >0,
Real {1,} <0, (15)

The solution (12) is uniquely determined by the
boundary value [ f(0)], while [G]™* [ f(z)] form the field
eigenstates; thus, we can have

(/O] =[G]lc],  [f(2)] =[G][L(z)l[c], (16a,D)

where [c] is a 4-vector consisting of coefficients of expan-
sion. It is advantageous to partition {G] and [c] as

A] [B et
[G] = [[ 11 ]J’ ] = [[ (_)]]
[C] [D] 7]
where [A4], [B], [C] and [D] are 2 x 2 matrices while
[c*] = column [¢{®); ¢i¥'] are 2-vectors. In view of (15)
and (16b), the 2-vector [¢'*7] represents planewaves trav-
eling towards z = oo, while the 2-vector [c!7] is for
planewaves traveling towards z = — 0.

(17a, b)

Reflection matrices

Let now the plane z = 0 separate the two media charac-
terized by

D=e¢ -E+a,H, z<0 (18a)
B=bE+m-H, z<0 (18Db)
D=e¢-E+a-H, z>0 (18¢c)
B=b+E+m-H, z>0 (184d)

and we have that the representations (6 a, b) are adequate
for the fields in the two halfspaces; thus x is the common
horizontal wave number mandated by Snel’s law or the
phase-matching condition. Consequently, the field be-
havior is adequately described by (164, b) in both half-
spaces, and we have

Lf@] =[G, [L,(2)1q], z<0, (19a)

@) =[Gl [L;(2)][s], z=0, (19b)

where [g] and [s] are 4-vectors. The continuities of the
tangential components of the E and the H fields across
the interface z = 0 require that

[fO+)] = [f0-)]. (20)

We begin with planewave incidence from the halfspace
z < 0; in other words, we set [s*™’] = column [0; 0]; then,
from (19 a, b) and using partitions of the type (17 a, b) we
obtain from (20) that

[4"71 =Ry 11a""], (21a)

where the 2 x 2 reflection matrix [R,,] can be computed
from

[Ryg] = — [D 17" [417 [4,]1[4,]. (21b)

In a similar fashion, when we have [¢'*)] = column [0; 0]
and the incidence is from the halfspace z > 0, we get

[s“] = [Re] 1571, (22a)
in which the 2 x 2 reflection matrix [R,,] is given as
[R]=—[C]7" 4] [B,]14,]. (221b)
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Here,
[4]=[B,][D,]7" = [4,][C,]7", (23a)
[4,] =~ [4,]7 [AJIC]HIC,], (23b)
(4,1 = U1~ [B,J" " [B,][D,]1" " [D,], (23¢)

with [I] being the identity matrix.

The Brewster conditions

We note from (21 a) that the reflection ratio [¢{ /g5 '] is
independent of the incidence ratio [¢}")/¢}"’] provided the
matrix [R,,] is singular, ie., the determinant of [R,,]
equals zero. Therefore, for incidence from the z < 0 half
space, if «, is such that

{(det[4,]- det[4,])/(det[D,] - det[A])} |, =, =0, (24)

then x, is the Brewster wavenumber and (24) is the corre-
sponding Brewster condition; here det denotes the deter-
minant.

Likewise from (22a), the reflection ratio [s{*'/s4")] is
independent of the incidence ratio [s{"/s5 '] if the matrix
[R,] is singular. In other words, for incidence from the
halfspace z = 0, if x, is such that

{(det[B,] - det [4,])/[(det[C,] - det[A])}] -, =0,  (29)

then x, is the Brewster wavenumber and (25) is the corre-
sponding Brewster condition.

Thus, depending on which halfspace the incidence is
from, we have a Brewster condition that tells us when the
ratio of the reflection amplitudes is totally decorrelated
from the ratio of the incidence amplitudes. It is to be
noted that (24) and (25) do not explicitly depend on the
phase velocities in the two media involved.

In all cases examined so far [S—10}, it has been that (24)
and (25) turn out be identical conditions and x, = x,;
these cases have included isotropic media, uniaxial dielec-
tric media and nonreciprocal media. However, in the
general schema presented here, no further simplification
of (24) and (25) may be possible without a more informa-
tive specification of the constitutive dyadics.
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