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"See how various the forms and how unvarying the principles."
Owen Jones

Abstract Several disparate natural structures have been identified as fractals, but these
identifications are usually limited to certain length scales; macroscopic objects, on the other
hand, are generally homogeneous and Euclidean. From the observations on several different
growth processes, we have arrived at the understanding that competition between growth
elements, masses as well as mechanisms, eventually eliminates self-affinity. The concepts of
de-sticking probabilities and reversibility are central to this conclusion.

Introduction

Ever since the exposition and the development of fractal concepts,! researchers from
diverse laboratories and universities have devoted considerable time and efforts in
identifyin% naturally occurring fractals as well as in understanding fractal growth
processes.© From cauliflowers and broccoli to clouds and coastlines, from electrode
interfaces to thin films, fractal structures have been observed and reported. Elaborate
models of diffusion-limited aggregation, ballistic aggregation, as well as of other
growth processes have been simulated on computers.> Various attempts have been
made to develop mathematical formalisms which supposedly describe the various
attributes of fractal structures.*> Yet the basic question ~ Fractals: Where’s the
Physics? ~ has largely remained unanswered.® And, very intimately tied to that query,
is the dilemma: Is Physics fractal? Or, are fractals merely the outwardly
manifestations of physical processes whose true characteristics still remain elusive?
Generally, answers to questions of such import painstakingly conceal themselves,
which makes it all the more necessary that some general principles be searched for,
some common denominators between apparently different, but self-affine, processes
and structures be identified. In what follows, we shall try to convey our perspectives
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on natural growth processes to exemplify our understanding that competition between
growth elements, masses as well as mechanisms, eventually eliminates self-affinity. A
recent computer simulation study of aggregation from lattice gas also hints towards
a fractal-to-compact transition.” The floor is, however, open for debate that, we hope,
will arise as a result of this communication. It is to be emphasised that novelty is not
claimed for all the individual parts of this paper; indeed, the works of other
researchers, as well as of ours, have been borrowed to support the premise of this

paper.

Gaskets and cellular automata

In an earlier paper,? we have described families of fractal gaskets which are derivable
from the generalisations? of the Pascal triangle. These structures, called the
‘generalised Pascal-Sierpinski gaskets (GPSGs), are classified by a bi-variate index
(K,L) in which K > 2 as well as L > 2. It turns out that almost all such gaskets are
self-affine; except when K = 2 and L is a prime, and in which case the similarity
dimension works out to be equal o log{1+2+3+...+L]/log[L], with L serving as the
scale.!®!1 But even when K > 2, it appears from visual examination of the gaskets,
that for prime L, the designation of L as the scale is still appropriate. This is because
the row n = LP, p 2 1 contains a total of K seeds (occupied sites) and (K — AP -1)
nulls (voids), the nulls being grouped together in (K — 1) groups, each group
consisting of (LP — 1) nulls and bounded on either side by a seed; needless to add,
since this grouping keeps on recurring every LP-th row, the proper fractal scale must
be logarithmic with base L, regardless of the specific value of K.

The LP-th row can be regarded, in the manner of Huygens’s principle, as a
re-seeding row for these GPSGs. Each seed on this row evolves out into a triangular
gasketlet made up of LP(L - 1) rows. Down its LP-th row, however, each gasketlet
contains [1 + (LP — 1)(K - 1)] sites which is larger than [1 + (LP — 1)] except when
K = 2. Consequently, these gasketlets interfere with each other. As a result, the
number of seeds does not scale with L, unless K = 2. It is to be emphasised here that
this interference, or the competition due to re-seeding, destroys self-similarity even
in the presence of a well-established scale.

Typically, well-known gaskets like those of Sierpinski, or the Menger sponge,!
turn out to-be self-similar because, as these structures evolve, increasingly larger
voids are created. Consider, however, cellular automata with initially disordered
conditions,!! which can be regarded as deterministically grown gaskets. As can be
observed from cellular automata, such a gasket’s voids do not increase in size
indiscriminately with increasing gasket size. Parenthetically, we observe here that
total void size, if not growing at the same rate as the total structure, is responsible for
the structure exhibiting a fractal nature; this argument augments upon the one given
for river basins by Kondoh et al..12 Furthermore, many of the voids have tails and
some inter-void connectivities also exist. These features suggest a similarity to
materials with highly-interlocked grains, or even to DLA simulations with low
sticking probabilities.!3.14

These structures have relevance to the cone-growth model of thin films.!5 If the
cones grow in a highly competitive environment, the cone diameters do not grow
indiscriminately large, the result being that such films are dense as well as
fine-grained, and are characterised by large fractal’ dimensions. Incidentally, the
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A B
Figure 1 SEM view of the top surface and frature cross-section of 25 um thick
hydrogenated amorphous Si films deposited on: (A) tin oxide sprayed coating on a stainless
steel substrate, and (B) polished stainless steel substrate. The bar marker is 10 wm. The
substrate surface, upon which the films grew, can be seen in the lower portion of each
micrograph. Note that the scratch marks on the relatively smoother substrate (B) are still
detectable on the top surface of the thick film, indicating thereby that the growth
competition was not extensive enough to ‘cover its tracks.’ (Micrographs courtesy of R.C.
Ross; see ref.18.)

cone-growth model also has relevance to the phenomena of fingering in fluid
dynamics.16

Thin to thick film transition

The observations which have led to the development of a fractal-like model of thin
film growth!>!7 have been mainly based upon visual inspection and limited
quantitative data. These initial papers, perhaps, overgeneralised the concept and the
geometry of competition for cone growth. Recent work!819 has shown that, although
many films exhibit a similar degree of competition over the ranges of film thickness
examined and lead to cauliflower-like top surfaces (see Figure 1A), there are distinct
conditions when this competition actually ceases. This cessation of competition
occurs after about 1 pm of growth evolution; the individual columns, which dictate
the top surface’s roughness, grow as nearly vertical-sided cones thereafter2® (see
Figure 1B). Such a final state has a morphology which is clearly non-fractal in the
precise sense; yet there was an evolution to that particular state from a competition
between adjacent cones for growth starting from the 10-30 A thickness to the final
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cylindrical column (i.e., cylinder) width of ~2,000-5,000 A. If the initial growth is
indeed fractal-like, then the following question can be posed: because the film is
microscopically non-uniform and still macroscopically homogeneous, what processes
can lead to a continued change in the fractal character?

In a related sense, examination of spectroscopic ellipsometric modelling data?!-22
has shown that for amorphous germanium (a-Ge) films subject to a high degree of
renucleation due to ion-bombardment during growth, the density remains essentially
constant regardless of the film thickness. For a-Ge films with a considerable lower
degree of bombardment-induced renucleation, the density increases by 14% over the
first 7,400 A of growth, and remains constant thereafter.?® In fact, such
non-uniformity of the film density during the early stages of growth is appearing to
be the rule, rather than the exception.?* One tempting explanation for this
phenomenon is related to the GPSGs® of orders (K > 2, L prime): interference, or the
competition due to re-seeding, destroys self-similarity even in the presence of a
well-established scale. A related conclusion, drawn from studying cellular automata,
is that maybe the films become *Euclidean’ as they evolve since the void distribution
turns out to be largely homogeneous. This is because voids of large sizes appear in
small numbers and are sparsely distributed, the structure being dominated by the more
numerous voids of smaller sizes.!”

Surface smoothening in columnar growth

Thin film growth morphology has many aspects ranging from the atomic scale
clustering due to ballistic aggregation to single crystal films. For conditions where the
atoms have very low adatom mobility, clustering at the 10-30 A level is a natural
consequence of the random ballistic aggregation process; this has been shown both
by computer models 25-27 as well as by direct observations of real films.2829 Since
a thin film has an essentially constant surface area, it means that the clusters which
nucleate on the substrate must either grow independently, or they must compete for
growth. The latter condition, of course, is what is observed in a variety of films.

This clustering and growth—competition model of the reality of low-mobility thin
film growth has seen its main utility in guiding our initial attempts at both
experimental!? and theoretical® quantification of film morphology. We are now at a
stage where we are beginning to extend this simple model to address such questions
as: are atomic aggregation processes random; what are the consequences of the
distribution of cluster sizes and of the rules of competition — albeit, what are the subtle
consequences of competition; and, in what ways does re-nucleation, in all of its varied
forms, affect final growth forms, such as the internal void network and the related top
surface roughness.

In the thin film literature, it is generally found that to;) surface morphology
increases in roughness with increasing film thickness.30-! This is intuitively
satisfactory since most studies start with nearly atomically smooth substrates (e.g.,
polished silicon wafers, glass slides) and resuit in canliflower-like (at low mobility)
or highly-faceted (at high mobility) top surfaces. The reality of surface smoothening
is not usually considered;3? but see Rikvold®? and Nittmann and Stanley 34 There are
two circumstances to consider. Starting from either an initially rough substrate
surface or with an initially rough thin film, is it possible that a smoother top surface
results due to subsequent growth? From experimental observations, the answer to this
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question is in the affirmative. For example, brightening agents are commonly used in
the preparation of electro-deposited films.3 These agents are so named because they
do just that to a coated surface, tuming it from a diffuse-scattering rough surface to
a considerably smoother, specular surface.36 It is known that the bri htening agents
increase the renucleation density and rate during film growth’’ and lead to
mechanically harder films,

Similar smoothening has also been seen in vapour-deposited multilayer thin
films3239 where the contrast between the successive layers unwittingly records the
roughness decimation and allows the observer to see subtle, but significant, changes
(see Figure 10 of ref.39). In addition, it should be noted that as the layers alternate,
there may be changes in the renucleation, especially at the interfaces where the
importance of the changes cannot be gainsaid. Yet another example can be seen in
the cross-sectional profiles of agates, where banding with growth thickness is
common; agates, also referred to as fibrous quartz, grow in a manner analogous to
that of thin films.*%4! Although the literature is not clear on this matter, concurrent
energetic particle bombardment during film growth appears to lead to increased
surface smoothening,?’2 possibly due to control of the nucleation as well as the
renucleation densities. Recent attempts to simulate the two-dimensional
cross-sectional growth by computerised geometric constructions,*2 which include
nucleation clusters, competition for cluster growth, and renucleation, demonstrate the
possibility of initial roughening, and subsequently eventual smoothening, during
growth. In particular, such smoothening occurs only at very high, but realistic, values
of renucleation.

Cantor-like dusts

After the preceding discussion on the structure of films, we turn our attention to the
dynamics of the growth processes. First, some mathematical preliminaries. Let a
bi-variate function be defined as a collection of disparate Dirac delta functions
through the usual fractal notions of the initiator and the generator, The initiator is the
ensemble:

f(x;a) = Z; 8(x - axp), ie {1,2,...M}

in the two-dimensional space ®2:{x |x = [x,y];x,y € RY; a is some scaling vector
while xg; is the i-th location on or inside the unit circle. The generator is also similarly
defined:

gx;a) =3, &(x - axg), ie (12,..N)

with x; also lying on or inside a unit circle. Then, a cluster (Cantor-like dust) of
evolutionary level E, E 2 1, is defined recursively as:

Pe(¥) = pp_1(x) * g(x;ap); po(x) = f(x;ap),

in which * denotes the spatial convolution.*> With specific conditions on the scaling
vectors ag, and on the locations x; and Xgi» these clusters can be made self-affine, or
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even self-similar;** randomisation can be implemented to a certain extent by
choosing different x.; at different levels.

The point to be made here is as follows: Suppose at a given level of evolution,
the cluster contains a particle at some site x,. Another particle floats down, as a result
of the growth process, and attaches itself to some site x* which is not appreciably far
from x, i.e. Ixo -x ] is much smaller than any other dimension of the cluster. The
cluster then could appear to have an extended particle which stretches from x;, to x’.
If such occurrences are allowed to take place several times in several locales, the
cluster would then appear to be piecewise continuous over several dense sets of
points. In other words then, the tendency towards macroscopic homogeneity would
be apparent, even though the cluster would be generated from a fractal process. In
fact, this tendency would come in at some level E, if the scaling vectors ag, ag,;,
ag,y, elc., are all equal to or less than unity in magnitude.

These clusters have some relevance to the computer simulations of
diffusion-limited aggregation as well as ballistic aggregation.2” Suppose there exists
a volume, which has internal voids, and which is receptive to further growth. Should
not the further acquisition of an incoming particle be influenced by the existing
volume as a whole, and not simply by the individual particles to one of which the
new particle would adhere to? One envisions, therefore, that these aggregation
processes are not as simple as their computer models, because the evolution of these
aggregates would certainly have a non-local flavour which has not been simulated on
the computers. Perhaps, one of the consequences of non-locality of the
cluster-particle interactions would be the creation of a smoother (i.e., less
discontinuous) ‘continuum’.

More accurately, perhaps, after some initial growth, the cluster-cluster
aggregation process would be more important than particle-particle aggregation in
order to explain dendritic growth; for example, morphogenetic studies on collagen
fibrils suggest that the cornea may have a fractal structure.*> In computer simulations,
the cluster-cluster aggregation process is usually ignored (but see ref.27). For
example, in the snowflake algorithm of Miyazima and Tanaka,*¢ dendritic growth
appears-on a dense (Euclidean) hexagonal nucleus. This dendritic growth can, with
some stretching of the imagination, explain the snowflake in Figure 4a of Miyazima
and Tanaka, but not the snowflake depicted in their Figure 4b. On the other hand, the
interaction of small clusters could explain very well either of the two natural
snowflakes. That conclusion would be considerably assisted by the concept of
reversibility, i.e. if the inter-particle bonds have some large, but finite, lifetimes,
which would tend to smear out ultrafine detail. In the evolution of large systems,
therefore, the history of the growth process cannot be easily ignored without dire
consequences.

Reversibility versus irreversibility

Most of the physical systems identified as having an underlying fractal geometry have
been simulated on computers using the requisite of irreversibility (but see refs 47-49
for recent incorporations of reversibility in computer simulations). Irreversible
growth processes occur far from equilibrium at high values of the driving force for
the phase transition, as shown in Figure 2. This figure shows the four main
morphological responses of a transition to solid state as a function of Ay, which. is
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Driving Force = Low Mobility = Irreversibility

ANISOTROPY ISOTROPY
CRYSTALLINE AMORPHOUS

Figure 2 Schematic illustration of the road to equilibrium for single clusters.

the difference between the chemical potentials of the non-aggregated and the
aggregated states. To the left of the dashed line, the morphology is controlled by a
three-dimensional periodic lattice; therefore, its symmetry belongs to one of the 32
crystallographic classes of point symmetry. On the other hand, to the right of the
dashed line, the morphology does not possess any basic rational or non-rational
periodic lattice. The transition across the dashed line is controlled by the compromise
between the rate of aggregation of particles and the system’s ability to relocate them
to the low-energy sites, i.e. the particle mobility. The transition between the three
distinct crystalline categories of the morphology is regulated by the competition
between the rates of three types of growth mechanisms: (a) dislocation growth (low
Aw), (b) two-dimensional nucleation growth (mid-range Ap), and (c) continuous
growth (high Ap). Experimental evidence of such transitions is available elsewhere.>

There is also a third factor influencing the competition. It appears when, unlike in
the previous cases, we consider the behaviour of multi-macrocluster systems. Then,
the whole morphology is controlled by geometrical selection, i.e. the competition for
available growth spaces between the neighbouring macroclusters, as well as between
the neighbouring microclusters constituting the macroclusters. As can be easily
envisaged, an unlimited number of possible configurations are realisable because the
growth is influenced by several factors:

(a) the density of seeds, or of the nucleation sites,

(b) the geometric arrangement of these seeds,

(c) the surface roughness of the substrate (in particular, the relative position of the
nucleation sites in relation to the roughness),

(d) the flow direction of the incoming particles, e.g., the flow lines of the diffusion
field,

(e) the structural interaction (epitaxy) between the seeds and the substrate, and

() the crystal structure, if ang, of the seeds.

The growth of thin films!? illustrates some of these considerations rather well. An
additional example is the geometric selection in the growth of malachite (copper
carbonate) spherulites, in which, again, the cone sizes do not grow indefinitely (see
Figure 193 of ref.51).
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Figure 3 Dendritic patterns naturally formed by (Mn0O:) in limestone. In (A), note the
similarity of the pyrolusite dendrites with the concept of fractal branching. The competition
due 1o successive re-nucleation steps (Liesegang's banding) tends to eliminate self-affinity in
(B).
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Crystal Faces

Spherulites

Fractal
Branching

Figure 4 Schematic illustration of the road to equilibrium for multi-cluster growth.
Competition for growth is conspicuous at all three stages.

When the purpose of the computer studies is to simulate natural structures with
high fidelity, it is important to consider two more points:
(1) Most natural structures, and even laboratory ones, evolve to equilibrium.
Therefore, reversibility, mobility, and desticking increase during the growth history;
we do not consider here the classical Lemlein-Kliya c-,xpen'ment?z"(;3 in which
evolution to equilibrium morphology is a result of the surface reorganisation aimed
to minimise surface tension. Thus, the mechanisms controlling the morphology are
subject to changes. This occurs in growth characterised by either or both, single- as
well as multi-clusters. Examples for the single-cluster growth include the case of PbS
growth;*® and that of the snowflakes. 46 In particular, Figure 4b of the latter reference
shows a clear change from a continuum (DLA mode) to a two-dimensional
nucleation-controlled growth. To illustrate the growth of multiclusters, we will
choose the very interesting case of pyrolusite “fractals’ of Figure 3. A property of the
diffusing-reacting systems is the production of hysteresis cycles of A leading to an
oscillato?' behaviour of the precipitation rate; and therefore, to a patterned
structure.>* Recently, such an oscillatory pattern has also been found to affect the
growth rates of single crystals under diffusion transport.55 Clearly, such a structure is
observable in Figure 3 where the banding destroys self-similarity. In Figure 4, the
morphologies of different evolutionary systems are schematically illustrated.

(2) As pointed out earlier, the assumption of irreversibility is an intrinsic
characteristic of most computer simulations devoted to explain the formation of
aggregates. Typically these algorithms begin with a seed in two-dimensional space,
which may or may not be latticed; then, particles aggregate ‘around’ the seed by a
diffusion-limited process.® It turns out that such algorithms are pliable to fractal
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analysis. It is, however, important to note that irreversibility derives from high Ap
values. This"implies that most of the particles form clusters whose sizes are lower
than that of the critical nucleus; a critical nucleus is stable and can grow
independently.5? To the best of our knowledge, unfortunately there is no formal
treatment available in literature that deals with the distribution statistics of clusters of
different sizes as a function of Ap, other than the classical nucleation theory. This
theory relies on the assumption that the total number of clusters is much smaller than
the number of unclustered particles in the system; it must be noted that this
assumption is invalid for rigorous studies of systems far from equilibrium, e.g. those
simulated by diffusion-limited aggregation. However, it is plausible to assume in
computer simulations that isolated particles would not be available for seed growth.
Thus, Meakin’s cluster-cluster aggregation model?” introduces physical meaning to
the earlier simulations of diffusion-limited aggregation. The situation remains
unchanged when one deals with the snowflake problem,*® but now it would be
necessary to introduce sticking probabilities related to symmetry on both seeds and
micro-clusters.

Surfaces of growing crystals

The transition from fractal structures with rough surfaces to crystal aggregates, and
even to single crystals with smooth surfaces, is a ubiquitous morphological response
of natural systems whén they go from irreversibility to equilibrium. A good example
is furnished by the growth of quartz druses from chalcedony spherulites, or from
randomly oriented seeds. As observed by Grigor’ ev,5! the number of crystals in a
druse is maximum at its base, while it rapidly decreases towards the upper region. In
fact, on replotting the graph in Figure 170 on page 193 of Grior’ev’s book on the
log-log scale, it can be observed that a linear relationship exists between the log of
the distance from the overgrowth surface and the log of the average distance between
the crystals. Therefore, as a result of the competition, the surface gets smoother.

Another good example is the naturally occurring growth of pyrolusite (Mn02)
dendrites in limestone. As shown in Figure 3, the morphological pattern of such
mineralogical systems is a typical example of fractals (see, for example, plate 56 of
ref.1). However, in areas where the amount of pyrolusite is smaller, the morphology
is very convoluted; conversely, in locales where the dendritic pattern becomes denser,
the surface gets smoother because of the increased competition between the dendrites.

It is worth noting that the rate at which the above-mentioned systems evolved —
low rates for quartz druses, and high ones for the MnO, dendrites, - is not significant
in the evolution processes; and competition between the growth elements turned out
to be the predominant factor.

Concluding remarks

We conclude with the following remarks on the evolution of natural aggregation
processes: In the beginning, there is extremely short-range order and the seeding may
be considered ‘random’. Further growth is only piecewise self-similar, ie. it is
globally self-affine:38-9 particles form small clusters. Then, long-range order begins
to assert itself as small clusters interact with each other and influence the accretion
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of more particles in a materially significant manner; the tendency towards
macroscopic homogeneity starts to manifest itself; the topological (fractal) measures
begin to tend towards the Euclidean dimensions. Fractals, thus, are band-limited, and
the competition for further growth among the elements eventually brings in
homogeneity and destroys the self-affinity present at the microscopic scales.
We end with Alexander Pope:
"Where order in variety we see,
and where, though all things differ, all agree.”
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