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Reflection of planewaves at the planar interface of two 
biisotropic media has been examined in order to obtain the 
Brewster wavenumber. This examination shows that the 
Brewster wavenumber is, at least, not necessarily affected by the 
reciprocity or the non-reciprocity of the media on either side of 
the planar interface. 

1. The Brewster Wavenumber  Concept  

Roughly around the end of the Second World War, the mode 
of presenting the Brewster angle in textbooks underwent a 
drastic change. As has been cataloged in [1], the original 
definition as a polarizing angle was replaced by that of a zero- 
reflection angle. This new definition, being related to a 
pathological  condi t ion of a Fresnel coefficient for a 
vacuum/dielectr ic  interface [2], is certainly the easier to 
remember, but represents just one among the many other 
interesting phenomena that can take place at such interfaces [3]. 
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The original definition, given by Brewster himself, is far more 
exciting in that it can be profitably extended to other bimaterial 
interfaces. In this connection, the concept of a Brewster 
wavenumber has been put forth at Penn State during the past 
few years. It is the objective of this communication to shed 
further light on this concept. 

Plane waves propagating towards (or away from) a planar 
interface between two homogenous regions can be expressed in 
terms of two distinct and orthogonal eigenmodes in either 
region [4]. Based on an extension of Brewster's empirical 
deductions, it has been conjectured that a condition may exist 
when the ratio of the amplitudes of the two eigenmodes of the 
reflected field is independent of the ratio of the amplitudes of 
the two eigenmodes of the incident field. This condition may 
be easily quantified in terms of the horizontal wavenumber ~c 
that comes in as a consequence of Snel's laws; a horizontal 
wavenumber fulfiling this condition may be termed as the 
Brewster wavenumber, its value depending, in general, on the 
frequency as well as on the properties of the two homogeneous 
media occupying either side of the planar interface. This 
conjecture has been tested for the planar interfaces of (i) a 
natural optically active [5] and an isotropic dielectric-magnetic 
media [6], (ii) a natural optically active and an uniaxial dielectric 
media [7], and (iii) an isotropic dielectric-magnetic and a general 
uniaxial media [8]. 

The cases examined heretofore [6-8] involved media that are 
reciprocal [9]. Of great interest, therefore, is the possible effect of 
nonreciprocity on the Brewster wavenumber concept. In order 
to explore this, we turn our attention to Fedorov biisotropic 
media [10, 11] that are the nonreciprocal generalizations of the 
isotropic natural optically active media [5, 12]. 

2. Fedorov Biisotropic Medium 

A Fedorov biisotropic medium can be characterized by the 
frequency-dependent {exp(-ic0t)} constitutive equations 
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D = E E + r VxE, 
B = ~ H + g~  VxH,  

(la) 
(lb) 

in  w h i c h  t he  p s e u d o s c a l a r  p a r a m e t e r s  0~ a n d  ~ ca r ry  the  
d i m e n s i o n  of length .  W e  def ine  the  quant i t i es  k = c0q(r a n d  
rl = d(Wr as usua l ,  b u t  no t ing  tha t  k is no t  a w a v e n u m b e r  a n d  
11 is no t  an  intr insic  i m p e d a n c e  here.  

App l i c a t i on  of a d i agona l i z ing  t r ans fo rm [5, 13] y ie lds  the  f ield 
d e c o m p o s i t i o n  

E = Q1 + Q2, (2a) 
H = i[Q1/~ 1 + Q2/TI2], (2b) 

w h e r e  t he  Be l t r ami  f i e lds  [14, 15] sa t i s fy  the  c i r c u l a t i o n  
c o n d i t i o n s  

VxQ1 = Y1 Q1, (3a) 
VxQ2 = - "/2 Q2- (3b) 

It is e v i d e n t  tha t  such  a m e d i u m  is b i re f r ingent ,  w i t h  the  t w o  
w a v e n u m b e r s  g iven  by  [13] 

"/1 = k [1 - k20~] -1 {q[1 + k2(0~-~)2/4] + k(0~+~)/2}, 

"/2 = k [1 - k20~] -1 {~/[1 + k2(~-~)2/4] - k((z+~)/2}, 
(4a) 
(4b) 

whi le  the  c o r r e s p o n d i n g  i m p e d a n c e s  are g iven  by 

n l  = - n /b / J1  + k2(c~-~)2/4] + k((z-~)/2}, 
TI2 = Tl{q[1 + k2((z-~)2/4] + k(o~-~)/2}. 

(5a) 
(Sb) 

We no te  in  p a s s i n g  tha t  "/1"/2 = k2 [1 - k20~[}] -1 and  111~2 = - -  T i  2 .  

F u r t h e r m o r e ,  for  the  F e d o r o v  m e d i a  to be  r ec ip roca l ,  it is 
necessa ry  tha t  (z = ~ [5]; in tha t  case, "/1 = k /J1  - k~], "/2 = k / [1  + 
k~], 111 = - TI and  ~2 = ~" 
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3. Fresnel Coeff ic ients  

Consider  n o w  the bimaterial  interface z = 0. The half-space z > 0 
is fil led wi th  the  h o m o g e n e o u s  Fedorov  m e d i u m  charac te r ized  
by D = e a E + ea0~aVXE, B = !~ a H + [ta~aVXH; whi le  the half-space z 
_< 0 is filled wi th  ano ther  Fedorov  m e d i u m  [D = g b E + EbRbVXE , 
B = ~t b H + ~l,b~bVXH]. The w a v e n u m b e r s  (Vla, b and  T2a,b) a n d  
the impedances  (Y~la, b and  ~12a.b) for both  med ia  are  def ined  as in 
Section 2. 

Wi thout  loss of general i ty ,  let z > 0 be the zone  of incidence and  
re f lec t ion ,  wh i l e  the  z o n e  z _< 0 be tha t  of  t r ansmis s ion .  
Consequen t ly  the p l a n e w a v e  represen ta t ion  for the  two m e d i a  
can be set up  as [6, 7, 16] 

Qla = Al[ey + i(C~la ex + ~c ez)/Yla] exp[i0c x -  ~laz)]  
+ Rl[ey + i(-~la e x + ~c e z)/Tin] exp[i0c x + ~la z)] ; z > 0, (6a) 

Q2a = A2[ey - i(~2a ex + ~c e z)/T2a] exp[i(~: x - a2a z)] 
+R2[ey i(-~2aex+~Cez)/T2a]exp[i0cx+(~2aZ)];  z > 0 .  (6b) 

Qlb = Tl[ey + i((~lb ex + lc ez)/Tlb] exp[i0c x - C~lb Z)] ; Z < 0, (6C) 

Q2b = T2[ey - i((~2b ex + 1r ez)/T2b] exp[i0c x - (I2b Z)] ; Z ~ 0. (6d) 

The coeff ic ients  A 1 and  A 2 are  the complex  a m p l i t u d e s  of the  
p l a n e w a v e  e i g e n m o d e s  inc ident  on  the  interface;  R 1 and  R2, of  
the  p l a n e w a v e  e i g e n m o d e s  ref lected off the  in ter face  into the  
zone  z > 0; whi le  T 1 and  T 2 are  for the  p l a n e w a v e  e i g e n m o d e s  
t r ansmi t t ed  into the zone  z < 0. Finally, lc is the  hor izon ta l  
w a v e n u m b e r  r e q u i r e d  by  Snel ' s  l aw  to sa t is fy  the  phase -  
ma tch ing  condi t ion  of the interface z = 0; ala.b = +q(yla,b 2 -~c 2) 
and  ~2a,b = +~/(72a,b 2 -- ~C2); and  e x, ey and  e z are  the un i t  Car tes ian 
vectors.  
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The b o u n d a r y  value  p rob lem is so lved by ensu r ing  the 
cont inui ty  of the tangential  components  of the E and the H 
fields across the interface z = 0. For a given ,:, the resul t ing 
solution can be stated as follows: 

R 1 = r l l  A 1 + r12 A2, (7a) 
R 2 = r21A 1 + r22 A2, (Tb) 

and  

T 1 = t l l A 1  +t12A2,  
T 2 =  t21A1 +t22A2.  

(8a) 
(8b) 

The four Fresnel reflection coefficients involved in (7a,b) can 
be specified as 

A~ = ('qla-TIlb) (Vl2a--T12b) (~ta ~ l b -  ~2a ~2b) 
-- (l~la -- 1~2a) (T]lb -- 112b) (~la ~2a -- ~lb ~2b ) 
--(111a--Tl2b) (111b-Tl2a) (~la ~2b--~lb  ~2a), (ga) 

A or22 = - (11 la - T~ lb) (112a -- 1~2b) (~la ~lb -- ~2a ~2b) 
-- (111a -- 112a) (111b --I~2b) (~ la  ~2a -- ~ lb  ~2b) 
+ (~la --T12b) (~lb --T]2a) (~la ~2b --~lb ~2a), (9b) 

A~ = - 2 (1~ la/1]2a) (112 a --111 b) (112 a --T~2 b) ~2a (~lb + ~2b), (9C) 

and 

A-r21 = - 2 (1~2a/1] 1 a) (111 a --1"11 b) (111 a --112 b) ~la (~lb + ~2b), (9d) 

w h e r e  

A = (111 a --Tllb) (112 a --1~2b) (~la ~lb + ~2a ~2b ) 
-- (I]1a --1~2a) (Tllb --I~2b) (~la ~2a + ~lb ~2b) 
-- (~ia --1120 (rhb - rl2,) (;la ;2b + ;lb ;2a), 0o) 
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~la, b = (~la ,b/ ' J ' la ,b  a n d  ~2a,b = O2a,b/~t2a,b �9 Similarly, t h e  
transmission coefficients of (8a,b) can be calculated from 

A't11 = - 2 (l~1b/l~la) (111 a --112a) (111 a --'q2b) ~la (~2a + ~2b), (lla) 

Aet l2  = -- 2 (Tllb/l]2 a) (111 a --1~2a) (112 a --112b) ~2a (~la -- ~2b), (11b) 

A't21 = 2 (TI2b/~]a) (TIla -TI2a) (Tlla--Tllb) ~la (~2a -- ~lb), (11C) 

and 

Aet22 = 2 (TlEb/Tl2a) (111 a --Tl2a) (1~2 a --l~lb) ~2a (~Xa + ~lb )" (11d) 

The specific manner of presenting the reflection and the 
transmission coefficients permits one to observe the interplay 
of the four impedances, and that of the four wavenumbers, at 
the bimaterial interface. 

4. The Brewster Wavenumber 

In order that the reflection ampli tude ratio ( R I / R  2) be 
independent of the incidence amplitude ratio (AI/A2), the 
equality 

r12r21 = rll r22 (12) 

must be satisfied. For (12) to hold, the horizontal wavenumber 
~c must be the solution of the equation 

(Tlla -1110 (Tl2a - Tl2b) (~la ~lb + ~2a ~2b ) 
+ (Tlla --1~2a) (111b --Tl2b) (~la ~2a + ~lb ~2b) 

= ('qla --~2b) (nlb --~2a) (r r + r r (13) 

It is to be noted that interchanging the symbols a and b in the 
subscripts of the quantities appearing in (13) does not alter that 
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equation; ergo, (13) broadens the concept of the Brewster angle, 
regardless of which half-space the incidence is from. Hence, (13) 
should be called the Brewster condition for the interfaces under  
consideration here, and the particular value of ~c satisfying this 
condition should be termed the Brewster wavenumber.  

Specifically, it is to be noted that the two media considered here 
are nonreciprocal; yet, the Brewster wavenumber  concept holds 
as firmly as in the previously considered cases [6-8] involving 
reciprocal media. This examination therefore demonstrates that 
the Brewster wavenumber  is, at least, not necessarily affected by 
the reciprocity or the non-reciprocity of the media on either side 
of the planar interface. 
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