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Diffusion in electromagnetic theory

J Cesar Monzon

Department of Research & Development, N J Damaskos, Inc , PO Box 469, Concordville, Pennsylvania,
PA 19331, USA

and
Akhlesh Lakhtakia

Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, Pennsylvania,
PA 16802-1484, USA |

Received 4 October 1990; revised received 4 February 1991

In a semiconductor, charge is transported by conduction as well as by diffusion. Here the effect of dif-
fusion is examined by incorporating diffusion in the constitutive equations. Infinite-medium Green’s
functions and mathematical statements of the Huygens’s principle are derived. Conservation of energy,
conservation of charge, and the creation of screen potentials and induced charges due to diffusion are ex-

amined.

1 Introduction

In an intrinsic semiconductor the charge is carried
by electrons as well as by electron-vacancies known
as holes'. Enhancement of current mechanisms is
affected by doping the intrinsic semiconductor with
electron-rich (or electron-poor) atoms, giving rise to
a semiconductor in which the majority carriers are
electrons (or holes) and the minority carriers are
holes (or electrons). Generation of electron-hole
pairs is constantly taking place: if the minority num-
ber density suddenly decreases below the equilibri--
um value, then thermal generation causes it to in-
crease exponentially back to equilibrium. Converse-
ly, if the minority carrier number density suddenly
increases above an equilibrium value, then it decays
exponentially down to the equilibrium value. be-
cause of recombination with the majority species. In
the presence of an applied static electric field, how-
ever, a dc bias drift current is created, which equals
the carrier charge times the carrier drift velocity.
This endows the material with anisotropic charac-
teristics, sihce the dc bias creates a preferred direc-
tion. Furthermore, it also makes the relevant equ-
ations non-linear, which are however generally line-
arized for analysis?.

Here we shall not be concerned with biased semi-
conductors however, because our modest aim is to
elucidate some basic characteristics of the diffusion
process. For the sake of simplicity, we shall ignore
generation and recombination, so that the time
scales are macroscopic in general. Also, we will only
consider single carrier transport; in particular, the

single carriers will be electrons. This idealized situa-
tion is actually a good small-signal model for a high-
ly doped, uniform, #-type semiconductor.

Before carrying on, we note that the classical elec-
tromagnetic theory of semiconductors has received
only scant attention, and that too because of interest
in utilizing semiconductors as substrates for micros-
trip circuits. Some work has been reported by
Sumi?®, which was further enhanced by Zotter*. Due
to Davis and Krowne®, a more comprehénsive anal-
ysis for planar semiconductor-free space interfaces
has recently become available. It is expected that the
sequel may also be of interest in the investigation of
plasmons®’.

2 The Diffusion Process

Let J be the volume carrier current density, and p
be the volume carrier charge (electron) density.
Then, the conservation of charge implies that

V.J=-9p/dt (1)

On the other hand, Fick’s law of diffusion would
give us

J=-D,Vp . (2)

where D, is the diffusion constant for electrons in the
n-type material. Combining Eqgs (1) and (2) leads to
the diffusion equation -

dp/ dt=D,Vp ..(3)

which is not symmetric under time-reversal, thereby

indicative of a one-way (irreversible) process. Also,
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Eq. (3) suggests that an arbitrary charge configura-
tion, confined within some finite volume, will decay
away with a time constant

1=12/D, , .. (4)

L being a length characteristic of the spatial var-
iations of the charge in the material.

Eq. (3) is a statement of charge conservation. As
such, it should be consistent with Maxwell’s equ-
ations. With ¢, and y, being, respectively, the (real)
permittivity and permeability of the semiconductor,
it is easily seen that the sourceless Faraday and
Ampere-Maxwell equations can read

VXE=—udH/dt

V xH=¢,dE/dt—e,D,VV .E ...(5a,b)

And Eq. (5b) leads to Eq. (3), since Gauss’ law
would have

V.(eE)=p ...{5¢)

In view of the above, it is not surprising why an
RLC transmission line is described by equations si-
milar to Egs (1) and (2), with the resistance R clearly
playing the role of the reciprocal of a diffusion con-
stant. The linkage of wave and “diffusive” processes
in RLC transmission lines has been known for some
time. It has been exploited in some complex applic-
ations, such as for studying lightning where the cor-
ona involves a charge diffusion process?.

No conduction current was added here on the
right side of Eq. (5b), in contrast to Davis and
Krowne®. This is in order to emphasize the fact that
conductivity as a measure of carrier collisions
shares attributes common with several other trans-
port phenomena. Examples include (i) diffusion the-
ory; (ii) heat conduction, a very lossy wave process
involving energy transfer at a very high frequency;
and (iil) viscosity or frictional force, where momen-
tum transport can either be ordinary or magnetic as
found in magnetohydrodynamics. These are lossy
processes which result in highly distorted and atten-
uated fields with virtually no time delay.

Inclusion of the conducting terms o on the right
side of Eq. (5b), and taking the divergence of the re-
sulting equation, reveals that the charge equation re-
tains its diffusive character in the form

{0/ 3t) pexp (ot/e,)|= D,V *[pexp (ot/&,)] ...(6)

as may be observed by comparing Eq. (3) with Eq.
(6). This implies that conductivity as well as diffu-
sion contribute to the damping of the oscillations.
On the other hand, inclusion of conductivity results
in the following (D-independent) equation for the
magnetic field lines:

542

ou,0H/9t— V' H=¢u {0"H/or} o (7)

as is customary when dealing with conducting
fluids’®. The left side of Eq. (7) suggests that the field
tends to decay with a time constant

1 =oul; ...(8)

where L, is a characteristic length of the spatial var-
iations of H. At very low frequencies, the right side
of Eq. (7) can be neglected to yield a diffusion equa-
tion

ou,dH/ dt=V’H ...(9)

Note must be made of the resemblance of Eq. (9) to
the usual approximation in magnetohydrodynam-
ics?. We conclude that Eq. (7) represents a wave with
time constant T,= / (e,us) L, which is competing
against the damped diffusion of field lines charac-
terised by the time constant 7,. When 7, > 7,, diffu-
sion dominates; whereas for 1, > 7,, the wave nature
dominates.

From the above mentioned discussion, we con-
clude that electron diffusion in a semiconductor will
only disturb the electric field lines, whereas diffu-
sion of the magnetic field lines is successfully ac-
counted for by the conductivity.

3 Longitudinal and Solenoidal Fields

With the foregoing discussion over, we now ana-
lyze diffusion in the time-harmonic regime. This is
of importance for semiconductors but of little use
for other diffusion processes, which generally occur
as transients, In view of the above mentioned con-
siderations and using the exp [iw¢] harmonic time
dependence, diffusion can be accommodated into
electromagnetic field theory by means of the consti-
tutive relations

B=u[H+p*VV .H]
...(10a,b)

D=¢E+a ’VV.E],

In these constitutive equations, the permittivity
e=¢,+ 0/iw, while a?= —iwe/ gD, with a carry-
ing the unit of inverse-length; the permeability
u= u,, while the magnetic analog fof a has been in-
troduced in Eq. (10b) for the sole purpose of gen-
erating a symmetric set of equations. In the sequel,
the Faraday and Ampere-Maxwell equations

VXE=—-iwB—K
...(11a,b)

will be used, with J denoting the impressed electric
source, and K its magnetic analog.
By repeated use of Egs (10) and (11), it is possible

VxH=ioD+J;
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to obtain the governing differential equations for the
E and H fields in a source-free region as

VXVXE-ka 2VV.E—kE=0 ...(12a)
VXVXH-Kk'B7°VV . H-KH=0 ...(12b)

in which k=, (eu). It should be noted that the
electric (resp. magnetic) diffusion constant does not
enter into the magnetic (resp. electric) field equa-
tion. Furthermore, either of these equations is simi-
lar to the equation for particle displacement in elas-
todynamics!©.

It is well known that the elastodynamic field in a
solid has two components, one of which is purely
longitudinal and the other one is purely solenoidal;
the two components travel with different phase vel-
ocities. In view of this analogy, let E and H be de-
composed into longitudinal and solenoidal compo-
nents as

E=E+VV,;, H=H+VV, ...(13a,b)

in which it is understood that V.E =0 and
V.H, = 0. Substitution of Eq. (13a, b) into Egs (12a)
and (12b) results in four Helmholtz equations:

[V?+ KE,=0 .(14a)
[V?+KH, =0 ..(14b)
Vi+ ]V, =0 .. (14c)
(Vi+ BV, =0 .(14d)

Thus, not only is k a wavenumber, but a and 8 are
as well. The relationships of these field components
require the derivation of infinite-medium Green’s
functions, which will be done using the Levine-
Schwinger technique.

4 Infinite-Medium Dyadic Green’s Functions

The source-incorporated Helmholtz equations
for the given medium can be derived from Eqs (10)
and {11) as

VXVXE-Kka *VV.E-KE=ioud -V xK
...(15a)

VXVXH- KB °VV.H- KH=iweK+V xJ
...(15b)

Since the medium is linear, the solution of Egs (15a)
and (15b) can be expressed in terms of the infinite-
medium Green’s functions as

Er)=iou [ d’r' 9 (r,r') . J(r)

+[d’r' %, (r,r') . K(r) ...(16a)

H(r)= [ d'r'%(r,r"). J(r)

+iwe[ d'r'g,(r,r’) . K(r') ...(16b)

in which the integrals span the source-carrying vo-
lumes, r’ is the source point, and r is the field point.
The aim of the Levine-Schwinger technique is to
find the dyadic Green’s functions ¥,(r, r’), etc. by
considering the canonical sources J=J,d(r—r’)
and K=K,d(r —r’), where J(r —r’) is the Dirac delta
function.

To begin with it is necessary to dispose off the di-
vergence terms in Egs (10a, b), (15a) and (15b). For
that purpose, the divergences of both sides of Eqs
(11a, b) are taken and Egs (10a, b) substituted into
the resulting expressions. As a result, one obtains

V' +a’|t. =(a/iwe)V . J;

(V2 + F1E. = (B /iwou)V . K ...(17a,b)
where
¢.=V.E; ¢,=V.H ...(18a,b)

Since J=J, 6 (r—r') and K=K, o (r—r’), the well-
known solutions of Eqs (17a, b) are obtained as

L(r)= —(az/ia)s)V J[gla,r=r')3,];

Enlr)= = (B/iop)V . [gBr—r)K,]  ...(18c,d)
in which
glx,R)=exp[—ixR]/4nR ...(19)

is a scalar Green’s function.

Using Eqs (17a, b) and the subsequent develop-
ments, it becomes possible now to obtain the Helm-
holtz equations for the E and H fields quite simply
as
(V4 KE= —ioud +[1 - Ka [V, +V XK

...{20a)
V'+ K H=—iweK+[1-KB8°IVE, -V XJ

...(20D)
in which [1 - %a %]VE, and [1 - k*B72]V {,, must
be interpreted as source terms, these sources being
distributed throughout the whole space as per Eq.
(17). At the same time, it is to be remembered that
J=J,0(r—r’) and K=K, 6(r—r’). But as is well-
known!! .

[VXVXF-KF].[F +k°VV)glkr—r1)
=7 d(rer’) (21

where .# is the idempotent. Therefore, the solution
of Eq. (20) can be obtained in the form
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Er)=iou% (r,r'). J,+ % (rr)K,
H(r)= G3(r,r') . Jo+iwe 4,(r,xr') . K,

..(22a)
..(22b)
where the dyadic functions are given as

G\(r,r)=[F +kVV|gkr—r)—k VVgar-r)

...(23)

Gi(r,0)=[F +kVV gk r—r)—k VVgBr—r)
... (24)
G(r,r')==-VX[ AL glkr—r')]=— %) ...(25)

In deriving these equations, use has been made of
the identity

J d3l'"g<k,l'_‘l'”)g(7€, rn_r,)
all space

=[glkr—r)—glxr—r )/ (kK — ) ...(26)

Coordinate-free forms of the Green’s functions
derived above can be obtained by explicit algebraic
procedures, i.e. by using the relations'':!2

VVgx,R)=[(ixR"'—R*)(#— 3RRR ")
-’ RRR *]g(x,R) ..(27a)
VX[ £ gk, R)]=(ix— R ")YR 'Rx £ )g(x,R)
...(27b)

It can also be shown that while ¥,(r, r’) satisfies the
differential equation

[(VXVX L —ka 'VV—FKA]. %(r.r)

=VXx.#d6(r—r) ..(28a)
%,(r,r’)is a solution of

[VXVX L —kKa "VV=kF]. 9 (r 1)

= /£(r-r) ...(28b)

with similar equations for %,(r,r’) and %,(r,r").

5 Huygens’s Principle and the Cauchy Data
Since the Green's functions are now known, it al-
so becomes ‘possible to derive Huygens’s principle

as well as explore the appropriate Cauchy data for

boundary value problems. Use is made of the inte-
gral relationship

J dv(b.curlcurlE—E . curl curlb)
v

=J’ ds.(EXcurlb—bXxcurtE)

\

...(29)

with b=iwu¥ (r,r’). e, as the electric field due to
an electric dipole of orientation e, located at r'€ V]
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and Vis a volume enclosed by the closed surface S.
E and the associated H do not have their sources in
V, and the unit normal e, = ds/|ds| points outwards
from V. Use of Egs (12a) and (28b) in Eq. (29) as
well as of standard vector identities, after some alge-
braic tedium leads to

-Er)=(1-ka™?) J ds e (r) X [E(r).curl (r,r’)

S

+{curl E(r)}. 4, (r,r")]+ kza_z[ dse,(r)

-{E(r).V}€\(r,r') = {V.E(r)} %(r, r")]
...(30)

which reduces to the usual form!' when ea™?=0.
Eq. (30) represents the mathematical statement of
Huygens's principle. It suggests that the field in V'is
completely specified by the tangential components
of E and curl E on §, as well as by the normal com-
ponent of E and the volumetric divergence of E on
S. When uf8~2+#0, it should be noted that H cannot
be directly obtained from E because of the diffusion
term VV . H. In order to obtain Huygens’s principle
for H, the foregoing process is repeated to obtain
the dual of Eq. (30) as

~H(r)=(1-Kp7") J dse,(r)

N

x [H(r).curl 4,(r,r’) + {curlH(r). 4,(r, "))

+Kp? J dse,(r).[[H(r).V} ,(r,r’)

—{V . .H(r)} %(r, 1) ...(31)
Again, the Cauchy data for Eq. (31) consists of four
pieces: the tangential components of H and curl H
on S, as well as by the normal component of H and
the volumetric divergence of Hon S.

But the specification of the tangential component
of curl E (resp. curl H) on Sis equivalent to the spec-
ification of the tangential component of H (resp. E)
on S, plus its volumetric divergence on S. We ob-
serve, therefore, that the electromagnetic field in-
side V'is completely known if the tangential compo-
nents, the normal components, and the volumetric
divergences of both E and H are specified on S. This
actually results in an overspecification, since it has
been found by Poynting vector type manipulations®
that unique results will be obtained if the tangential
components of E and H, and either their normal
components or their divergences but not both, are
specified on S.
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To appreciate this intrinsic difficulty in Egs (30)
and (31), we invoke the following argument: Since
V . E satisfies Eq. (17a) in the absence of sources in
V. via Green'’s theorem it may be possible to find an
integral equation relating V. E and e, . V(V . E) on
S. On the other hand, from Eq.{12a} we have

(e,. VX)(VXE)—ka "e,.V(V.E)— ke, . E=0
... (32)

in V. This equation relates the normal component of
E with e, .V (V.E) and the transversal derivatives
of the tangential components of VXE. In view of
these considerations, and making use of Maxwell’s
equations, the Cauchy data consists of (i) e,.E,
(ii) e, . H, (iil) e, X E, and (iv) e, X H specified on S.
Incidently, by letting the field point r" approach §
normally, coupled surface integral equations can be
obtained for use in the solution of scattering and ra-
diation problems involving homogeneously doped
and arbitrarily shaped semiconducting bodies.

6 Conservation of Energy

From the preceding section it is clear that in the me-
dium concerned three types of waves can exist. The
first one is a truly electromagnetic wave with a phase
velocity w/k. The second is a purely electric wave
which has a phase velocity w/a and is irrotational.
So is the third one, a purely magnetic wave with a
phase velocity w/f. Thus, the mathematical corre-
spondence with the elastodynamic case holds good,
although the physics of elastic wave propagation dif-
fers from that of the electromagnetic wave propaga-
tion.

At this juncture, with the essential theoretical an-
alysis being over, we begin to ignore the magnetic
analogs B and K of the electric quantities a and J;
and finally, we come to the effect of diffusion on the
radiated power density. One may assume that the
energy flow is still E X H*; however, that needs to be
verified. With the help of Eqs (10) and (11), it can be
shown that

0=V.(EXH*)+EJ*+io[uH H* - ¢*E.E*]
—iw(ea **E.V(V .E¥) ...(33)

Let

0,=¢V.E ...{34a)

be the diffusion charge density, and a diffusion cur-
rent density

Jy=—&D,V(V.E) ...(34Db)

be associated with it as per Fick’s law given by Eq.
(2). Then, Eq. (33) can be rewritten as

0=V . (ExXH*)+E . [J*+J%]
+iw[uH . H*— ¢*E . E¥] ...(35)

and this equation for the conservation of energy is
explainable in standard terms since diffusion has
been accounted for in a manner akin to ohmic heat
loss. Thus, any Poynting vector calculation proceeds
as usual, but results in expressions coupling the dif-
fusive and the wave characters of the fields.

7 Screening Potential and Induced Charges

The effect of diffusion is to modify the short range
field, and not significantly the radiation zone field.
From Egs (14c) and (18a,c), it becomes quite clear
that an electron cloud surrounds the electric dipole,
the consequent charge distribution being given by
04r)=¢V .E(r) in the far zone, as per Eq. (34a).
Fick’s law, given by Eq. (2), then suggests the creation
of an associated current density distribution
Jy(r)= — &.D,V[V . E(r)]. Therefore, we deduce that
diffusion causes the source electrostatic singularity
to disappear, and screens the Coulomb field of the
source up to a distance on the order of 1/a” (where
a=a —ia”). If a test (negative) charge were to ap-
pear somewhere, then electrons would diffuse to
screen out its Coulomb field. We conclude therefore
that diffusion will play a very important role where
the geometry is characterised by lepgths compar-
able to or smaller than 1/a”, which length may be
considered as the dividing line between the diffu-
sion-dominated and the wave-dominated length
scales.

The effect of diffusion is to create potential ener-
gy barriers for the propagation of the electromag-
netic field; in other words, the radiation resistance
of the medium is enhanced by the presence of a.
Additionally, radiated electric charges due to one
source are also scattered by the diffusion barriers
created by another source, thereby further compli-
cating interactions between sources.

To be sure, J, and p, of Eq. (344, b) satisfy Fick’s
law [Eq. (2)]; in addition, Eq. (11a) can be written in
the form

VxH=iweE+J,+J ...(36)

so as to account for diffusion explicitly. But J; and
04 do not satisfy Eq. (1) for conservation of charge.
If we, however, suggest the introduction of addition-
al charges and currents via

J.=—-0oE, 0.=(0/iw)V .E ...(37a,b)

which do satisfy Eq. (1) by themselves, then it is easy
to see using Eq. (17a), that

V. J,tiwlpgt+o.)=0 ...(38)
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This turns out to be sensible, since the same elec-
trons occur in both the conduction and the diffusion
mechanisms: a conduction electron may ‘disappear’
and become a diffusion electron, and vice versa. As

expected, when D, 0, then J, o4 and o, all vanish '

outside the source region, which is where they are
pertinent; electron diffusion is not a stand-alone
process and must be accompanied by conduction.
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