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The coupled dipole approximation method was formulated by Purcell and Pennypacker to treat scattering by irregular bodies, 
and it has gained considerable currency in the recent past. Since the heuristic formulation of the method has a semi-microscopic 
flavour, here it has been given a firm macroscopic foundation by connecting it with volume integral equations. This communica- 
tion also serves as a mini-review of the recent developments of this numerical technique. 

1. Introduction 

Although scattering computat ions involving right 
circular cylinders and spheres can be carried out an- 
alytically and with considerable ease, analytical tech- 
niques for scattering by arbitrarily-shaped bodies are 
not available. Invariably, numerical approaches have 
to be resorted to in order to obtain the scattering 
characteristics of  irregular bodies, homogeneous as 
well as inhomogeneous [1,2].  

Any dielectric body can be thought of  as consisting 
of  elementary electric dipoles: this thought forms the 
basis of  post-maxwellian developments in electro- 
magnetic theory, wherein a transition from the mi- 
croscopic to the macroscopic (cont inuum)  fields is 
made [ 3 ]. Although the reverse transition (from the 
macroscopic to the microscopic) is not quite correct, 
it is widely utilized in constructing effective medium 
theories for composites [4 ]. 

That, however, is not the theme of  this commu-  
nication. Instead, attention is focussed on a semi-mi- 
croscopic method for computing scattering from ir- 
regular objects. This numerical technique is variously 
known as the coupled dipole approximation method 
[ 5 ] and the Purcell-Pennypacker method [ 6 ] after 
its originators [ 7 ]. Originally developed for under- 
standing scattering by interstellar dust particles, this 
method has gained considerable currency in the re- 
cent past. As it stands, the method was formulated 
[7] on a purely heuristic basis. The object here is to 
provide it with a firm macroscopic basis by con- 

necting it with volume integral equation methods. In 
addition, the sequel will also serve as a mini-review 
of  recent developments of  this technique, 

2. Preliminary 

For the sake o f  simplicity, we will consider a ho- 
mogeneous dielectric scatterer of  arbitrary shape 
embedded in free space in the sequel. Let the scat- 
terer be modelled by a collection of  spherical sub- 
units; without loss of  generality, let the subunits, each 
of  radius a and dielectric constant ~r~0, be identical. 
Then, since the nth subunit is electrically small, it 
can be modelled as a point electric dipole; hence, 

Pn=aEe . . . . .  (1) 

where a=47ra3~o(¢r - 1 ) / ( ¢ r + 2 )  is the Clausius- 
Mosotti polarizability [8] of  the spherical subunit, 
E~ .... is the electric field exciting the nth subunit, and 
Pn is the equivalent electric dipole moment .  

The field radiated by an electric dipole in free space 
can be computed in terms of  the free space dyadic 
Green's  function [ 9 ]. The field exciting the nth sub- 
unit is composed of  the field actually incident on the 
dielectric scatterer plus the fields scattered by all the 
other spherical subunits. Thus, the exciting field on 
the nth subunit has to be computed by solving the 
dyadic equation 

E~ .... =Emc(r~)+ ~ (wZl~olS.m)'o~Ee . . . . .  (2) 
r n # n  
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in which r, is the location of the center of  the nth 
spherical subunit, Einc is the incident field, E ..... is 
the exciting field for the nth subunit, the interaction 
dyadic (!in,~ = (!io (rn, rm), 

tSo(r, r ' )  

= (~+ VV/k 2) [exp(iko [r-r ' l  )/41tl r - r ' l  ] , 
(3) 

is the free space Green's dyadic, ko= o9 ~x/~o~ is the 
free space wavenumber, and 3 is the identity dyadic. 
It is to be noted that (2) can be written in a matrix 
notation. Once it has been solved using matrix al- 
gebra, the scattered field at any location r outside the 
dielectric body can be easily computed as 

Esca(r) = ogZ/to O~ ~ (~o(r, rm)'Ee . . . . .  (4) 
m 

3. Analysis 

In order to provide a macroscopic theory for the 
coupled dipole approximation method, we turn our 
attention to the electric field integral equation [2, 
10-13]. 

Let the bounded region V, occupied by a dielectric 
medium (¢#o, #o) be embedded in free space (to, 
/to). In the absence of source currents and charges, 
and using a harmonic time-dependence exp ( - i o ) t ) ,  
the Maxwell curl equations everywhere can be writ- 
ten as 

V×E-i~oI%H=O, FxH+ itoeoE=J , (5a,b) 

where 

J(r) = - iO)eo(er -  1 ) E(r), re V, (6a) 

J(r)=O, rCV. (6b) 

Thus, the influence of the dielectric scatterer is being 
treated as that due to a certain volume distribution 
of the electric current density in free space [ 10,11 ]. 

The procedure of solving ( 5a, b) has been detailed 
by Jones [ 10 ], and results in the electric field and 
the magnetic field integral equations that have been 
extensively utilized in the area of  numerical electro- 
magnetics. Let Einc and Hinc represent the (homo- 
geneous) solutions of (5a, b)  when J = 0  every- 
where; in other words, {Eino Hin¢} denote the field 

incident on the scatterer. Then, the solution of (5a, 
b) is obtained as [9-11 ] 

E(r) -Einc(r)  = i c o ~  J- dr' fDo(r, r' ) .J(r ') ,  (7a) 
v 

H(r) -Hinc(r )  = V × j  dr '  ~o(r, r '  ) - J ( r '  ). (7b) 
v 

It should be noted that (7a, b) hold for all points r, 
inside as well as outside V. Further, as mentioned by 
Jones [10], (7a, b) satisfy (i) the continuity of the 
tangential components of the E and the H fields 
across the boundary of V, and (ii) the radiation con- 
dition at infinity. 

Since the scatterer is dielectric, we concentrate on 
(7a) now onwards [ 11 ]. When r lies inside V, then 
(7a) is a volume integral equation of the second kind. 
Noting that 15o(r, r '  ) is singular at r=r' [ 14], this 
equation can be transformed to 

E(r) =Ei.¢(r ) + J(r) / ( 3i6o~o) 

+PV(io)Izofdv'J(r') ' t f io(r' ,r)-J(r)/(3i~Oeo)) 
v 

r~ V, (8) 

in which PV denotes the principal value, while the 
singularity at r=r' has been clearly identified. Once 
the solution of (8) has been obtained, it can be sub- 
stituted in (7a, b) to find the field scattered by the 
dielectric obstacle into free space. 

Eq. (8) provides the macroscopic basis of the cou- 
pled dipole approximation method. Let the volume 
V be broken up into mutually disjoint volumes Vn 
( n =  1, 2, ..., N), and let r ,  denote the center of V,. 
It is then assumed that the field is constant inside V,, 
i.e., E(r) = E ( r , )  = E ,  for re Vn. Then (8) simplifies 
to 

E,=[3/(er+Z)]E,,¢(rn) 

+ ~ (~02#oOtm) ff~nm.Em, (9) 
m # n  

where 

a n = 3 Vn EO(~ r -- 1 )/(¢r + 2 )  , (10) 

it being assumed that all volumes Vn have suffi- 
ciently isotropic shapes. 

In order to convert (9) into (2), the correct iden- 
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tification of  E~ is necessary. This En is the field ex- 
isting inside the dielectric volume Vn. Since Vn is elec- 
trically small, there is no harm in thinking of  it as 
being spherical. This allows o~n to formally have the 
status o f  the Clausius-Mosotti polarizability o f  a di- 
electric sphere. Next, for example, in section (9.5) 
of  van Bladel [ 15 ], it is shown that if Eexc excites a 
small dielectric sphere, the field inside the sphere is 
given by [ 3 / ( ~ r + 2 ) ]  Eexc. Therefore, the field ex- 
citing the spherical Vn can be obtained from (9) as 

Ee .... =Einc(r~) + ~, ((/)2fl-0~nm)"amE e . . . . .  ( 11 ) 
m ~ n  

which is the core o f  the Purcell-Pennypacker for- 
malism as well as o f  its variants. In particular, let all 
Vn be identical in volume so that each can be thought 
of  in terms of  the equivoluminal of  radius a. It is easy 
to see then that c~n of  ( 11 ) is the ~x of  (2).  

4. D i s c u s s i o n  

In the coupled dipole approximation method, there 
is no need that the scatterer be homogeneous. In- 
deed, the only restriction is that each spherical sub- 
unit be so. This is also borne out by Jones'  t reatment 
of  (7a, b).  

Further, the spherical subunits may have magnetic 
properties and chiral properties as well, which re- 
suits in a coupling of  electric and magnetic fields 
[16 ]. The subunits may even be anisotropic [ 17], 
and even nonspherical [ 5,18 ]. Even the scattering 
object need not be compact:  it may simply be an ag- 
glomerate of  distinct particles [ 19,20 ]. 

The straightforward solution o f  (2)  requires the 
inversion o f  a matrix [ 5,17 ], which puts consider- 
able strain on computing facilities and introduces er- 
rors. To some extent, errors arising from matrix in- 
version algorithms can be minimized by using the 
conjugate gradient method [21 ], and the storage re- 
quirements can be reduced by exploiting any geo- 
metric symmetries the scatterer and the incident field 
may have [22,23].  The matrix itself may be by- 
passed by resorting to iterative solution techniques 
[7,20 ], or by taking recourse to an order-of-scatter- 
ing approximation [ 24-26  ]; convergence o f  the an-  

swer has to be carefully checked, however. 
Inevitably, the coupled dipole approximation 

method has its limitations, besides the matrix stor- 
age and inversion problems. These become apparent 
when the subunits are either (i) strong scatterers by 
themselves, in which case the off-diagonal interac- 
tion terms (represented by tS~,, in (2 ) )  may over- 
shadow the diagonal terms; or (ii) strong absorbers 
in which case the internal fields En may be highly 
concentrated in some regions. 

Ill-conditioning from either of  these factors is in- 
tensified if the subunits lie in close proximity of  each 
other. Thus, as of  now, a treatable scatter may not 
have electrically large dimensions, nor can its prop- 
erties contrast sharply from that of  free space (i.e., 
the ambient medium) .  The method, however, may 
be ideally suitable for tenuous scatterers such as frac- 
tal clusters [20,27],  carbonaceous smoke [28,29 ], 
snow crystals [ 30],  cirrus clouds [ 31 ], pharmacol- 
ogical suspensions [ 32 ], macromolecules [ 33 ] comet 
tails [ 34 ], particulate surfaces [ 35 ] and interstellar 
particulate matter [ 7,21 ]. 

In dealing with compact  scatterers, considerable 
errors stems from the piecewise constant assumption 
of  the internal fields. This situation is reminiscent of  
similar problems in the method of  moments  [36 ]. 
If, however, the sole aim is to obtain the scattered 
field in the far zone, then this error may have only 
a limited effect. 

A greater problem is demonstrated by the non-sat- 
isfaction [6,21] of  the optical theorem [ 15] when 
the incident field is a plane wave and ~r is purely real. 
Even an isolated spherical subunit must attenuate the 
incident plane wave so that the equivalent dipole 
moment  cannot be in phase with the incident plane 
wave. But a real refractive index implies a purely real 
Clausius-Mosotti polarizability a .  Hence, the ot to 
be used in (2) and (4) must have an imaginary 
component .  

A complex polarizability can be provided in at least 
two ways. Instead o f  obtaining a from the Clausius- 
Mosotti  formula [8] ,  it can be obtained from the 
lowest order term in the Mie solution itself [ 37 ]. Or, 
a radiative correction may be done by replacing the 
Clausius-Mosotti a by c~/[ 1 - ( 1/6neo)ikao~] as has 
been done by Draine [21 ] ~ 

#1 Draine [21 ] has used gaussian units, as also have some others. 
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There  has been  yet a n o t h e r  d e v e l o p m e n t  to make  
the coupled  dipole  m e t h o d  satisfy the opt ical  theo-  
rem. Since the spherical  subun i t s  are usual ly  ar- 
ranged u n i f o r m l y  on  a car tes ian lattice, in t ru th  each 
s u b u n i t  is a cube.  Th i s  has been  ut i l ized as a cor- 
rec t ion  [6] to the d iagonal  t e rms  in the mat r ix  in- 
volved in (9)  ~2 

In  the i n t roduc to ry  section,  it was m e n t i o n e d  that  
the coupled-d ipo le  a p p r o x i m a t i o n  m e t h o d  is a semi- 
microscopic  me thod .  In  order  to jus t i fy  tha t  appel-  
la t ion,  cons ider  (2 )  rewri t ten  as 

pn/a=Einc(rn)+ ~ (~oZl~oebnm).Pm . (12 )  
m # n  

ceedings of  two conferences  - Electronic,  T ranspo r t  
a n d  Opt ica l  Proper t ies  of  I n h o m o g e n e o u s  Media .  It 
mus t  be that  the e n o r m o u s  pro l i fe ra t ion  of  scientif ic  
l i terature  in recent  years is responsible  for the ab- 
sence of  these proceedings  f rom the shelves of  the 
Penn  State Libraries.  

This work is affectionatel.v dedicated to Craig Fred- 
eric Bohren, Distinguished Professor of Meteorology 
at the Pennsylvania State University, on the occasion 
of his 50th birthday. 

Thus ,  ( 12 )  has a microscopic basis since it repre- 

sents a col lect ion of  discrete  dipoles  in free space im-  
mersed  in the i nc iden t  field//inc. In  fact, ( 12 ) is used 
in sect ion 2.4 of  Born and  Wol f ' s  book  [38]  a n d  
elsewhere [e.g., 39-41  ] to d e t e r m i n e  the equiva len t ,  
and  therefore macroscopic, proper t ies  of  (d ie lec t r ic )  
mat ter .  

O n  the o ther  hand ,  Purcel l  a n d  Pe n n y p ack e r  [7 ] 
used the Claus ius -Mosot t i  polar izabi l i ty  [8] involv-  
ing the dielectr ic  cons t an t  in (2 ) .  The  dielectr ic  con-  
s tant  is a macroscopic enti ty.  Hence,  it would  no  
ma t t e r  how large N ( the n u m b e r  of  spherical  un i t s )  
a n d  how smal l  a ( the s u b u n i t  d i m e n s i o n )  be, the 
subuni t s  r ema in  pieces of  a c o n t i n u u m  a n d  can never  
become  molecules  in  (2 ) .  Were ( 12 ) to be used with 
even  an  es t ima ted  molecu la r  polar izabl i ty  ins tead  of  
the Claus ius -Mosot t i  polar izabi l i ty ,  the  Purce l l -Pen-  
nypacke r  f o r m u l a t i o n  would  indeed  be microscopic. 
As it is, the use of  the macroscopic dielectr ic  cons t an t  
in c~ suggests tha t  the fo rmu l a t i o n  is on ly  a semi-mi- 
croscopic approach  to scat tering.  

In  s u m m a r y ,  it is to be  no ted  that  a f i rm macro-  
scopic basis  has been  p rov ided  for the coupled  di- 
pole a p p r o x i m a t i o n  me thod ,  by connec t i ng  (2)  with 
the electric field integral equat ion .  Thus,  this me thod  
has been  connec ted  wi th  the var ious  o ther  numer i ca l  
t echn iques  c o m m o n l y  used for scat ter ing problems.  

Final ly ,  at the suggest ion o f  an a n o n y m o u s  re- 
v iewer  and  in  the context  o f  compos i t e  a n d  inho-  
m ogeneous  mater ia ls ,  a t t en t i o n  is d r awn  to the pro- 

n2 Goedecke and O'Brien [6] have actually worked with (9). 
This should be contrasted with (2), which represents an ex- 
citing field formalism. 
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