J. Phys. France 51 (1990) 2235-2242 15 OCTOBRE 1990, PAGE 2235

Classification
Physics Abstracts
41.10

Short Communication

Polarizability dyadics of small bianisotropic spheres
Akhlesh Lakhtakia

Department of Engineering Science and Mechanics, The Pennsylvania State University, University
Park, PA 16802, US.A.

(Received 23 April 1990, accepted 6 August 1990)

Abstract. — The low-frequency scattering response of a homogeneous sphere made of a general
linear bianisotropic material is quantified in terms of polarizability dyadics. The polarizability dyadics
are then used to generalize the Maxwell-Garnet model for a composite obtained by randomly sus-
pending small bianisotropic spheres in an isotropic achiral host medium.

1. Introduction.

Treatment of scattering by homogeneous isotropic spheres can be traced back to Mie [1] and
Debye [2] ; the resulting formulation has enjoyed enormous popularity, and has been extended to
bi-isotropic spheres as well [3] . But a treatment of comparable simplicity, elegance and generality
for homogeneous anisotropic spheres is still elusive. Analytic solutions requiring intensive compu-
tation have become available for scattering by radially uniaxial dielectric spheres [4, 5] . In recent
years, a semi-microscopic numerical approach due to Purcell and Pennypacker [6] has been used
for anisotropic spheres [7] . For electrically small anisotropic spheres, however, the most common
procedure used is to compute the scattering characteristics of an “averaged” isotropic sphere [7-9].

It is well-known that the field scattered by any scatterer (in free space) can be decomposed into
multipoles [10] . In particular, at low enough frequencies, the scattering response of a homoge-
neous dielectric sphere is isomorphic with the radiation characteristics of a point electric dipole;
hence, a small dielectric sphere may be adequately characterized by an electric polarizability [9.
This fact, along with the Clausius-Mosotti relation [10] , was utilized by Maxwell-Garnet [11] to
fashion a theory for the macroscopic properties of a composite medium constructed by randomly
dispersing small spherical inclusions in a dielectric host material. The resulting approach has been
considerably augmented for different cases [12,13], and it has its competitors in the Bruggeman
model [14] and its variants [e.g., 15], as well as in the more rigorous multiple scattering theo-
ries [16-18]. The elegant simplicity of this approach has lead to its extensive usage, nevertheless,
despite its many limitations [12,13] .
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The objectives of this paper are twofold. First, the scattering response of a general, hom oge-
neous, small bianisotropic [19,20] sphere will be obtained. Second, the Maxwell-Garnet m odel
will be generalized in order to estimate the effective properties of a composite constructed by
randomly suspending small bianisotropic spheres in a homogeneous, isotropic, achiral [21] host
medium; without loss of generality, the host medium will be taken to be free space. Coupled
volume integral equations will be used in section 2 to obtain the polarizability dyadics of a small
bianisotropic sphere suspended in free space. Parenthetically, it should be noted that these po-
larizability dyadics can be used in extending the Purcell-Pennypacker technique [6] for arbitrary
scatterers [e.g., 7, 22]. Following the developments of section 2, the constitutive parameters of the
Maxwell-Garnet model of the composite will be estimated in section 3.

2. Polarizabilities of a small bianisotropic sphere.

Leta spherical region of radius a be occupied by a general, linear, homogeneous medium specified
by the constitutive equations

D) =0 ¢ B+ 0 oHO)| . B) = po [geBw)+ poH@)] rev

be embedded in free space (eo, o). The sphere is assumed to be centered at the originr = O, ¢
is the relative permittivity dyadic, y is the relative permeability dyadic, while a and § represent

the magnetoelectric dyadics; no restrictions have been placed as of now on these dyadics, and a
medium described by (1) is called bianisotropic [19,20] .
Bianisotropic media occur readily in nature. Materials exhibiting the dielectric Faraday effect

( p=pl, a=p= O) abound as crystals [23] . Ferrites and plasmas [19] exhibit the magnetic

Faraday effect (5_ =el,a=p0= O). Natural optically active materials (s =el,p=pn

I~

3

a=al, B=p L) are well-known to organic and physical chemists [21,24] . Even a simply

moving, isotropic dielectric scatterer appears to be bianisotropic to a stationary observer [25] .
Thus, a material characterised by (1) is the most general, linear, non-diffusive electromagnetic
substance. Physically realizable forms of the constitutive tensors have been discussed at length by
Post [19] within the framework of Lorentz covariance [26] . i

In the absence of any impressed sources, Maxwell curl equations satisfied by time-harmonic
[e=*?] electromagnetic fields everywhere can be expressed concisely as

V x H(r) + iweoE(r) = J(r), V x E(r) — iwpoH(r) = —K(r). (2)

The quantities on the right-hand sides of (2) are given by

J(x) =0, r¢Vv, (3a)
30) = —ives (- 1) B+ g etie)], rev, (3b)
K(r) =0, r¢g Vv, (4a}

K(r) = —iwpo [Q oE(r) + (é— i) ° H(r)} , TEV, (4b)
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In which I is the idempotent. Thus, the influence of the bianisotropic scatterer is being treated as

that due to certain volume distributions of the electric and the magnetic current densities in free
space.
The solution of (2) is well-known, and is given for all r by [27]

E(r) — Epc(r) = iw;Jg/Vdv' go (r,*')e J(r') - V x /Vdv' go (r,) e K(r'), (5a)

H(zr) — Hipe(r) = inD/Vdv’ gg (r,r) e K(x') + V x Ldv' gg (r,x') e J(x'). (5b)

In these equations, the free space Green'’s dyadic Go (r,x’) is defined as

Go (e = (1 Y/ ol ), (6a)

where
go(xr,x’) = exp [iko|r — x'[] /4x|r — r'|, (6b)

is the free space scalar Green’s function, ko = w+/(eopo) is the free space wavenumber, and
Einc(r) and H,(r) represent the field incident on the scatterer. The specific properties of the
solution (5) have been discussed in detail by Jones [27] , to which work the interested reader is
referred to for further details.

It is assumed here that kga < 1; hence, the field inside V can be easily estimated by making a
long-wavelength approximation. First, the equations (5) can be transformed to [28]

E(r) = Einc(r) + J(r)/ (Biweo) + P.V. {iwuo /Vdv’ I(x')e Go (x',1) — J(r)/ (Biweg)
- (7a)

_/vdv' K(r') o [v'x Go (r’,r)]};r€V>

H(r) = Hyo(r) + K(r)/ (3iwpo) +P.V. {iweofvdv’ K(Z[;/)O Go (v',r) — K(r)/ (3iwpo)
T (7b)

+/Vdv’ J(r')e [V’x Go (f',r)]};r €V,

in which P.V. denotes the principal value, while the singularities at r = r’ have been clearly identi-
fied. Parenthetically, it is to be noted here that (7a, b) considerably generalize and extend Jones’
formulation [27] . Next, the P.V.{e} are set to zero since the scatterer is electrically small, and one
gets
E(0) = Ein(0) + J(0)/ (3iweo), H(0) = Hi,o(0) + K(0)/ (3iwpo) - (8a,b)
Tt must be remarked here that the spheres considered here have radii small compared to the
free-space wavelength at a given frequency w. From available literature concerning isotropic di-
electric spheres, it appears that the approximation (8a, b) may be valid for koa < 0.1 or there-
abouts [29, 30].
A long-wavelength approximation is also made for the scattered field in the far-zone, and leads
1o

Es(r) ~ {wzyo [Z - uru,] e p — wkou, X m} exp [ikor] /4mr, (9a)
He(r) ~ {wzso [Z - u,u,]em +wkou, X p} exp [ikor] [4mr. (9b)
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in which u, is a unit vector parallel to r, while

p= (i/w)/vdv'.](r'), (10a)

is an electric dipole moment, and

m = (i/w)/vdv'K(r'), (10b)

is a magnetic dipole moment. Consequently, in the low-frequency regime, the scattered fields at-
tributable to the bianisotropic scatterer can be thought of as due to the combination of an electric
dipole and a magnetic dipole.

Next, it is assumed that the electromagnetic field induced inside the small sphere is spatially
constant; L.e., E(r) = E(0) and H(r) = H(0) for all r € V. Solving (8) and (10) together yields

P = Gee eEinc+ Gem oHiyc, m = Gme oEn.+ Gmm oH ., (1 1)

in which the four polarizability dyadics for the small bianisotropic sphere are given by

-1

Gee = d7a’co (5_+2 L) . [(i— L) +3ae At e e.“] : (12a)

tem = —121a% A7 0 71 (12b)

dme = —127a’pg A7 e a7, (12c)
-1

tun = dnan (u421) o [(n-1) 43808770 571, (120)

In these equations, g‘l is the dyadic inverse of j, etc.; while

HP
i
I~

_ 9__—1 . (5:+2 i) N (Q” _I;) , (13a)

and

I

h =

I~

_ g—l o ({f:“ Q . gl ° (e:—{—Z Q . (13b)

It is assumed here and hereafter that all dyadic inverses exist [19 (Chaps. 6 and 8)] or can be
satisfactorily taken into account.

Expressions (12a-d) constitute the most general result for the polarizability-representation of
a small homogeneous sphere made of the most general, linear, non-diffusive material and em-
bedded in free space. Since they hold for fully bianisotropic spheres, these results subsume 1ot
only the traditional result for isotropic dielectric spheres [10] but also that for chiral spheres
[22, 28, 31].
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3. Effective properties of a composite.

Finally, a discrete random medium made up of identical bianisotropic spheres distributed in a free
space is considered. The spheres are randomly distributed with N being the number density per
unit volume. It is also assumed in this section that the volumetric proportion of the chiral material
is small, and it is expected that the analysis will hold for N(4x/ 3)a® < 0.1 or so [12] . Finally, itis
also assumed here that all spheres have identical constitutive tensors within a global coordinate
system.

If the resulting composite medium is to be viewed as being effectively homogeneous, its constitu-
tive parameters must be of the form

D = gg |€efr OE + et 'H} , B=po [geﬁ oE + pent ‘H] . (14)

The concept of flux densities, D and B, implies a polarization field P = (D — eoE) and a magne-
tization field M = (B — uoH). The polarization field P is defined as the electric dipole moment
per unit volume, while the magnetization field M is the magnetic dipole moment per unit volume;
thus,

P = Np, M = Nm. (15)

The equivalent moments, p and m, of a single sphere are proportional to the local (Lorentz)
electric and magnetic fields exciting it [10] . Therefore, from (11),

P = Qee o + Qem o], m = dme oEL+ mm oHy, (16)

must be used in (15); here, the subscript “L” stands for Lorentz. Assuming thatspheres are weakly
anisotropic, the usual [13, 32] prescription for the Lorentz field can be followed; ie.,

Simultaneous solution of (15)-(17) then yields

-1

P= {(m/N) il » | L= (¥/30) :] S RED ;mm]'l o (N/3¢0) g_:m} .

-1
o{ {£~ (N/3p0) gmm] e N ame +3po c_l_e‘n} ® fl_ee} e E +

1 (18a)

. {(3uo/N) cii o [1- (/320) ase| = [L= (9/300) e (/3e0) gz:me} .

o { [g__- (N/3u0) i‘“m] B o N amm +3p10 I} o H,
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M= {(380/N) Oge ® [i—(N/3uo) 9__mm] = [i’(N/3€°) gee]_l o (N/3p0) gz__em} °

-1
o{[£-(N/3€o) a_ec] o N aem + 3¢ g;;el ° gmm} o H+

1 (18b)

o {<3eo/N> ait o [ L (4/300) ama = [ L= (V7320 e (N/300) dem b o

0{[:7:-(1\7/350) gee]—loN Gee +3¢eq _I.:} s E.

It follows from (14), as well as from the definitions of P and M, that the constitutive parameters
of the effective medium can now be estimated as

oo — L= {(3uo/N) it 10320 0] = 1~ ¥/300) g o 07320 imer .

-1
e (1/e0) { [i—— (N/3p0) g;mm] o N Ime +3p0 fz;;n} e _C_ﬂ__ee} , (19a)

-1

et = {(3;;0/N) az e [i — (N/3¢0) ?__ee] - [{: — (N/3u0) i‘“m] . (N/3¢0) i‘“} .

-1
- (/eo) { |- (09/300) ama | um 4300 _1_} , (190)

= {(350/1\/1 Ome ® [i —(N/3p0) g:mm} - [i — (N/3¢0) 9_:&] - o (N/3u0) iem} .

-

Beft —

-1
e(1/po) { [i—(N/Seo) fl_je] s N dem + 3eq g;,;g ® imm} , (19¢)

Bt = {(350/N) gz__;é J [i —(N/3p0) c;mm] - [{ — (N/3e0) g:ee] - o (N/3p0) a:em}_l °

®(1/po) { [{__— (N/3€0) iee] Ty Gee +320 i} : (194)

When (12a-d) are substituted into (19a-d), the resulting values of the constitutive parameters
of the bianisotropic composite (14) are too cumbersome for inclusion here. Nevertheless, they
constitute an extensive generalization of the Maxwell-Garnet formula given for composites made
of isotropic dielectric spheres suspended in an isotropic dielectric host medium.

Before concluding, it may be of use to consider the limiting case N (4x/ 3)a® < 0.1. Insuch a
dilute composite, the Lorentz fields {Er, Hy} can be simply replaced by {E, H} in (16), because
the spheres will not interact with each other. Expressions (19a-d) simplify considerably in that
case, and are given by

Eeff — (N/EO) Qee + L, Qeff= (N/EO) Gem - (ZOa,b)
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geﬁ" = (N/NO) imm + i; geﬁ: (N/“O) iﬂle . (ZOC,d)
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