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Abstract

On extending the Brewster law at planar interfaces. The reflection
of planewaves at planar chiral-uniaxial interfaces has been ex-
amined in order to broaden the concept of the Brewster law into
what may be termed as the Brewster reflection de-correlation
condition.

Inhalt

Erweiterung des Brewstergesetzes an planaren Grenzschichten.
Die Reflexion von Planwellen an planaren chiral-einachsigen
Grenzflichen wird untersucht, um das Konzept des Brewster-
winkels in Richtung ,, Brewster Reflexions Dekorrelationsbedin-
gung’’ zu erweitern.

Introduction

In 1815, Sir David Brewster described [1] his experiments
on the reflection of unpolarised light from planar dielec-
tric-dielectric interfaces. Data collected by him gave rise
to what is now called the Brewster angle, and was con-
densed by him into the Brewster law. Modern textbooks
tend to give an un-Brewsterian definition of the Brewster
law [2], which is more faithfully stated for dielectric-
dielectric interfaces as: If unpolarized light is incident at
this angle, the reflected light is plane-polarized. It is the
purpose of this communication to broaden the concept of
the Brewster angle into what may be termed as the Brew-
ster reflection de-correlation condition. This will be done
by examining the reflection of plane waves at planar
chiral-uniaxial interfaces.

Theoretical Development

Consider the interface z = 0: a homogeneous, lossless,
uniaxial dielectric medium occupies the half-space z = 0;
while the half-space z < 0 is filled with an isotropic, ho-
mogeneous, lossless, chiral medium.

The chiral medium, characterized by [3]

D =¢[E+ BV XE];, B=p[H+ BV xH], (1)
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is circularly birefringent. Thus, the fields in the region
z £ 0 are circularly polarised, and may be represented
using the vectors [3]

0, = A[e, +i(— 5 e, + xe)fy ] explilex + 0, 2)]
+ Byle, + (6, e, + xe.)/y ] explilicx — d,2)];
z <0, (2a)

0,= AZ[ey + i(0,e, — Ke,)/y,] expli(kx + 9,2)]
+ Bsle, —i(d,e, + ke,)/vo] explilex — 6,2)];
z<0. (2b)

Here, the wavenumbers are given by y, = k/(1 — kf)
and 7, = k/(1 + kp); k= w./(ue) is merely a shorth

and notation; while &, = +./(y] —«?) and 9§, =
+/(y2 — x%). The coefficients 4; and A, represent
plane waves incident on the interface, while B, and B,
denote the plane waves reflected off into the chiral half-
space. The electromagnetic fields in this region are given
by

E=Q,~inQ,, H=0,—(i/n 0

with # = /(u/e). An exp[— iwt] time-dependence has
been assumed, while x is the horizontal wavenumber re-
quired by Snell’s law to satisfy the phase-matching condi-
tion at the interface z = 0; and e_, etc., are the unit Carte-
sian vectors.

The constitutive relations for the unixial medium are
specified as [4]

20, (3)

D:’?’J_uE+(8k[u"8J.u)c(c'E); B:HuH» Zgo (4)

in which the optic axis is represented by the unit vector
¢, in all generality [5], as

c=e.siné +e,cosl, 0°= &< 180°. (5)

It is well known that the planewaves in the unixial
medium are of the ordinary and the extraordinary types.
Thus, an appropriate representation of the planewaves in
this half-space can be set down as

E,= Cyexplilicx + 63,4 2)]
+ D, expli(kx — d5,-2)], (6a)

E, = C,expli(kx + 9,,2)]
+ Dy expli(kx — 8,,2)], (6b)
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Hx == Jlu{_‘ Cl exp [i(KX + 51uz)]
1Dy expliicx — 6,91, (69)

Hy = JZu{Cz exXp [l(KY + 52u+2)]
— D, expliex — 85, 21}, (64)
H. = (x/ou,) E,, (6e)
—wk, = [kH, + ols), — &,) E, sin{ cos {J/
ey, sin® & + &y, cos? &]. (6f)

In these expressions, the various quantities used are
given as follows:

10 = + JIKZ, — 71, (72)
le, sin? & + &, cos* &1 65,4
= —K(gy, — &) sin cos &
+ ek, sin® € + K, cos? £ — k)], (TH)
[e, sin? & + &, cos? £] 6,
= (g, — &) sin & cos &
+ etk sin €+ ki, cos® £ — )], (70)

Jlu = 5114/(1)#“7 (7d)
Sy = a)ﬂsuusu]/\/fkiu sin® & 4 ki, cos* & — «?], (7e)
kiu = wZ :uu SJ_uﬁ (7f)
ki, = o® ey, (7g)

The coefficients D, and D, represent plane waves inci-
dent on the interface, while C, and C, represent plane
waves reflected off the interface.

The boundary value problem is solved by ensuring the
continuity of the tangential components of the E and the
H ficlds across the interface z = 0. For a given «, the
resulting solution is best stated in matrix notation as
follows:

(Bl>: (Rll RlZ) <A1> +<[11 t12> <D1>) (83)
B, Ry Ry, A, Lyy I D,
<C1> — (Tu T12> <A1> i <"11 ’”12) <D1>. (8b)
¢, T, T, A, 21 Fa2 D,
The various Fresnel reflection and transmission coeffi-

cients involved in the foregoing matrices are given as
follows:

AR,y =poq_ +5_
ARy = =210,/ p-
ARy =p-qs +5-
Aryy = —2indy,q-
AT55 = 4n(0,/y2) vy
ATy = —4i(0,/y,) v,
Atyy = — 2J3,0

Aty = 2iJ,uy

ARy = —piq- +s_
AR 5 = 2in(0,/72) p-
Aryy=p_g, —s.
Ary, = —2inJy,q.
ATy = 4(0,/71) uz
ATy, = — 4in(d,/y,) uy
Aty =2nJ,u,

At , = —2inJ,,v,

where

i

A=pig.+s, pe ="ty Jo £ 1
4+ = (52/}’2) T 01/y1)  se =20[(01/71) 02/y2) Jau £ J1l
up =n0/y) o+ 1 uy =n(05/75) Jp, + 1

vy =nJy, + 04/71) vy = nJp + (62/72).

!

Analysis

Suppose now that D; = D, = 0, so that incidence is from
the chiral side only. The condition on the horizontal
wavenumber x such that the ratio (B,/B,) is independent
of the ratio {4,/A4,) can be obtained easily following Chen
[4], and is given by

Ry Ry =Ry Ry;, ©
which can be succintly expressed as
piqs —s, =0. (10)

Therefore, if k satisfies eq. (10}, the reflection ratio (B,/
B,) is completely decorrelated from the incidence ratio
(4,/4,).

Now, let 4, = A, = 0, so that incidence is from the
uniaxial side only. In order that the reflection ratio (C,/
C,) be independent of the incidence ratio (D/D,), the
condition

Fiatar = T2, (11)

must be satisfied. But, eq. (11) also boils down to p, ¢,
-5, =0!

Thus, it is appropriate that eq. (10) be referred to as the
Brewster reflection decorrelation condition for planar chi-
ral-uniaxial interfaces, regardless of which half-space the
incidence is from. This is a very general statement, since
by setting f§ = 0, the chiral half-space can be made to be
achiral; whereas by setting ¢, = ¢,,, the uniaxial half-
space can be made to be isotropic. Hence, eq. (10) consti-
tutes the chief result of this communication.

Consider also the case of normal incidence, ie., k = 0.
Both r, and r;, are directly proportional to q_. Conse-
quently, a normally-incident ordinary (resp. extraordi-
nary) plane wave on the uniaxial side is reflected back as
an ordinary (resp. extraordinary) plane wave. On the
other hand, R, and R, , are not zero when k = 0. Hence,
even for a normally incident left- (resp. right-) circularly
polarized planewave, the reflected field will have both
left- and right-circularly plarized components (unless
& = 0°); this is a direct consequence of the anisotropy of
the uniaxial medium.

Finally, the following two relationships should also be
noted:
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[(Ry,/in) + (inRy )1 — Ry Ry + (Ry,fin) (inR, ]!
=p-/Ps, (12a)

(12b)

[y — 1ol [1 = ryyrap + Fiahy] ' = — S_/s4.

These two relations are in the same vein as the rela-
tions between Fresnel reflection coefficients derived by
Azzam [6] for planar dielectric-dielectric interfaces. Since
the uniaxial medium is anisotropic, the left sides of both
€gs. (12a) and (12b) contain x; corresponding to the case
investigated by Azzam, the left sides would not contain x
and be independent of the angle of incidence.

References

[1] D. B. Brewster, “On the laws which regulate the polarization of light
by reflection from transparent bodies,” Philos. Trans. Roy. Soc. Lond.
105 (1815) 105-129.

[2] A. Lakhtakia, “Would Brewster recognize today’s Brewster angle?”
Optics News 15 (6) (1989) 14-18.

[3] A.Lakhtakia, V. K. Varadan and V. V. Varadan, Time-Harmonic Elec-
tromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).

[4] H.C. Chen, Theory of Electromagnetic Waves (Wiley, New York,
1983), p. 246.

[5] The optic axis of the uniaxial medium should be represented by ¢ =
e sincos{ +e,sinsin{ + e, cosé{0° £ £ 180°,0°< ¢ g 360°},
in all generality. However, a simple rotation of the co-ordinate system
about the z-axis reduces ¢ to the form given as eq. (5).

[6] R. M. A. Azzam, “Relationship between the p and s Fresnel reflection
coefficients of an interface independent of angle of incidence,” J. Opt.
Soc. Am. A3 (1986) 928-929.



