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In recent years, continued fractions have been used for understanding such diverse topics as the fractal
quantization of particles in one-dimensional potentials with incommensurate periods [1], the frustrated
instabilities of active optical resonators [2], and the ac responses of rough surfaces [3, 4].

It is well-known that continued fractions can be used to represent ladder circuits [5], and that idea was
utilized to explore the characteristics of resistance-capacitance and resistance-inductance circuits by Lakhtakia’
et al. [4]. This note examines the input impedance of an infinite ladder circuit, composed of purely reactive
elements, in which scaling has been provided through a single parameter. It is shown that the input
impedance does follow a scaling law. Further, the resonance frequencies of truncated circuits have been
examined.

A continued fraction Q can be set up in terms of numbers ag, a1, ay, a3,... as [6]

Q= {a) 2, a,a,,..} = a, + 1

a, + 1
ag + .. (1)
One of the properties of an infinite continued fraction is that if it converges, any of its remainders (which are
also infinite) also converge; that is if {ag, a1, a5, a3,...} converges, then (a;, ay, a3, a4....} also converges.

Shown in Figure 1 is the ladder circuit studied here. In terms of the notation (1) for continued fractions,
its input impedance Z(*) can be given as

7)) = {joL, joC, joL, a jaC, joL, a> joC, joL, a > jaC, ..} , )

where L is the inductance, C is the capacitance, ® is the circular frequency, j = V(-1), while a is the (real)
scaling parameter. After some algebraic tedium, it can be easily shown that the following scaling
relationships hold:

7Z"Nw) + [0"LC- 1] +joL * [2 - ¢°LC)

7@ w)= 3)

[joC » Z™ ()] * [1 + 1/a— 0’LC] - 1/a + @’LC * [1/a + 2 — ©’LC]
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Figure 1 Schematic of the ladder L-C circuit.
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Figure 2 Plots of log; 0| Z®(w)! and ¢@(w) versus log;o(w/e,) fori=5,a=2,L = 10and C = 0.1,
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Figure 3 Plots of log;0|2®(w)| and ¢®(w) versus log;g(a/wy) fori = 10,a=10,L = 10 and C = 0.1,

Z°Nw) * [(@LC) - 2 w'LC—2a 20’LC +2°] +joL » [22° —a @’LC]

2+ [Z" (@) * joC + [a* +2a— @’LC] -2 0’LC +a°]

It should be noted that the case a = 1.0 does not have any scaling.

Due to the presence of both inductors and capacitors in the circuit, resonances can occur. In order to
investigate the resonance behavior, the circuit of Figure 1 was truncated, and the input impedance Z® (w)
was defined as the finite-size continued fraction

7 (@) = (joL, joC, joL, a joC, joL, a 2 joCy..., joL, 2 joC} . ()

Those frequencies at which Z@) (@) is purely real constitute the resonance frequency of the truncated circuit.

At high frequencies, the capacitances are effectively short-circuits, while the inductances are
open-circuits; consequently, Z{) (@) ~ jo for large . The reverse is the case at low frequencies; hence
Z()(w) ~ —j/o for small . Any resonance frequencies, therefore, can only be observed for intermediate
values of .

Numerical computations of the resonance frequencies were made. As an example, in Figure 2 the
magnitude |Z@)(w)| and the phase ¢UW)(w) are plotted fori=S5,a=2,L =10and C=0.1. Similarly, in
Figure 3, the same quantities are plotted for i = 10, a = 10, L = 10 and C = 0.1. In these figures, the
normalizing frequency w, = 1N(LC). From the calculations reported in Figures 2 and 3, as well as from a
host of other numerical studies, it was observed the Z({)(w) has precisely i resonances. It was also observed
that the largest resonance frequency does not exceed 2w,, although a lower bound for the resonance
frequencies could not be identified.

Returning to Z(i)(w), it is noted that at small frequencies, the inductances can be effectively ignored, and
the infinite-sized circuit is effectively capacitative; hence, in the limit @—0, the impedance will obey the
approxxmatg dynamic scaling law [7]
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Z"(w/a) ~a 7Zw) . (6)

This is, however, trivially so since all the inductance have been short-circuited and all the capacitances are in
parallel. On the other hand, at large frequencies, the capacitances can be replaced by open-circuits, and the
infinite-sized circuit is effectively inductive; hence, in the limit w—s<o, the approximate scaling law

7" (wa)~aZw) . )

will be trivially obeyed since all the capacitances have been open-circuited and all of the inductances are in
series,
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