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ABSTRACT

Propgation of electromagnetic waves in a parallel-plate waveguide wholly filled with a chiral medium is
examined. The dispersion equation derived leads to two sets of modes. Propagation consiants for the two sets
have been numerically obtained.

1. INTRODUCTION

Although the phenomenon of chirality is known chiefly at the molecular level, it has been suggested [1]
that particles endowed with chirality can exist at even lower frequencies, say, in the GHz range. This is
because chirality, or handedness, is a geometric property: for example, the electromagnetic response of a
right-handed helix is different from that of a left-handed one [2]. Furthermore, by embedding such chiral
particles in a low-loss dielectric medium, that medium too will possess handedness. With advances in
polymer science, it is becoming increasingly possible that such artificial materials can be manufactored with
ease, and their properties tailored by altering the sizes and concentration of the embedded chiral particles.

Significant advances have taken place recently in the formulation of a frequency-domain electromagnetic
theory for chiral media, and these have been summarised by us elsewhere [1]. With these developments, itis
time that aspects relating to the application of chiral media for practical problems be explored. To that end,
we have already obtained the eigenmodes of a perfectly conducting sphere filled with a homogeneous,
isotropic, chiral medium [3]. In continuation of our aim, we study here the modes of a parallcl-plate
waveguide filled with a chiral material. It is our conjecture that this geometry will be of use in the
development of integrated circuitry with chiral substrates.

Consider a source-free region occupied by an isotropic chiral medium in which the usual
constitutive relations D = ¢E and B = pH do not hold due to their incompatibility with the handedness of
the medium. Instead, the relations

D=¢E+PeVXE ; B=pH+BpVxH (1)

hold, and satisfy the requirements of time-reversal symmetry and reciprocity. Following [4], the
electromagnetic field is transformed to

E=Q +%Q, ; H=Q,+2,Q, , 2)

where the left- (LCP) and the right- (RCP) circularly polarized fields, Q; and Q5, respectively, must satisfy
the Helmholtz equations

(V2491 Q=0 ; (V'+4)Q,=0 , 3)
along with the rotational conditions
VXQ1='YIQ1 > VXQ2="72Q2 . (4)
Needless to say, these fields are also divergence-free, vide
V°Q1=0 ; V°Q2=0 . (8)
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In these equations, the two wavenumbers are given by

Y, =k/{1-kB} ; y=k/{1+kB} , ©)
and

a=-i@E@W? ; a=-ie" . )

An exp[~iot] time dependence has been assumed throughout this work, while k = o{pe} 172 js simply a
shorthand notation.

2. MODAL ANALYSIS

Consider the region bounded by the perfectly conducting plates z = +d, which is wholly filled with a
chiral medium. It is well-known that although LCP and RCP waves can propagate independently in an
unbounded chiral region, at a bimaterial interface mode-conversion occurs [4]. Therefore, pure LCP or RCP
modes cannot exist within a bounded chiral volume. Using a representation given by us earlier [5], the
electromagnetic field inside the parallel-plate waveguide can be adequately expressed by

Q=[A, 7% (-a e, +xe,~iy, e, } explio;z]
+ Al_ YII {Ot1 e +xe - i'yl ey} cxp[—ialz]] exp [ixx] , (8a)
Q2 = [A2+'Y;l {_a,z e +xe + i‘y2 ey} cxp[iazz]

+A,_ y;l {o,e +xe +iy, ey} exp[-ia., z]] exp [ixx] , (8b)

which satisfy the phase-matchingz conditions via the horizontal wavenumber x. In these equations,
a1 = +V(y12 - ¥2) and 0 = +V(yo2 — x2), while A} and Ay, are the unknown field coefficients.

The boundary conditions require that the tangential components of the electric field be identically zero on
the surfaces z = +d. The use of (2) and (8) along with the boundary conditions leads to the dispersion equation

0=[{ey7;" + 07"} (1 -expli2 (y, +¥) 1} + (o%;" - 0,%,") {explizy, dl} - expli2y, d1}] x

[0y + 0"} (1-expliz v, + 1) dl} - {37 - 03"} (expliy, dI} —explizy, d1)].
©)

Since (9) contains two factors on its right hand side, it is clear that two kinds of modes can exist. The
dispersion equation for the first set of modes is given by

0= {07 + %"} {1-expliz (v, +7) 1} + {37 - 3"} (explizy, d1} - explizy, dl}] ,

(10a)

and for these modes it is easily seen that ’
A=Ay 1A =1 (10)
KA, A, =sin(a,d)/sin(a,d) . (10c)

As a consequence the field components Ey and H, are even with respect to z, whereas the field components
Ey, Hy, E; and H, are odd with respect to z.
On the other hand, the dispersion equation for the second set of modes is given by
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0= [{o,7]" + %'} (1-expli2 (v, +%,) d1} - {o,%; — o7 ) {expli2y, d]) -expli2y, d]}]

(11a)

and for these modes it can be shown that
A IAL =y JA, =1, (11b)
g A, /A, =cos(a,d)/cos(a,d) . (11c)

As a consequence the field components Ex and Hy are odd with respect to z, whereas the field components
Ey,H , E; and H,, are even with respect to z.
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Figure 1. Solutions xd of the dispersion equations (12c) and (13c) are virtually identical for B/d < 104,
They also correspond (almost exactly) to the TE- and TM- polarised fields when f8/d = 0.

3. NUMERICAL RESULTS

With the developments of the previous section, the modal fields of the first set can be compactly set
down as

Q, =explixx] yIl (-0, cos(a,z) e, + ixsin(at,z) e, + v,sin(a, 2) ey} , (12a)

ap Q2 = exp[ixx] 'y;I {—azcos(azz) e + ixsin(a,z) e - yzsin(azz) ey} sin(a,d) /sin(a,d)

(12b)

the horizontal wavenumber x can be determined for this set by solving the equation
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oY,/ ey, + taxi(ald)/ tan(a,d)=0 . (12¢c)

In a similar vein, the modal fields of the second set can be written as

. -1 . .
Q1 =explikx] Y {—alsm(alz) e + xcos(alz) e - xylcos(alz) ey} , (13a)

 Q, = explirx] 7, (-iaysin(az2) e, + Kcos(cy2) e, + cos(et,2) e, } cos(ce,d)/cos(ad)

(13b)
the horizontal wavenumber x can be determined for this set by solving the equation

R A / oy, + cot(a.,d)/ cot(azd) =0 . (13c)

The solutions xd of the dispersion equations (12c) and (13c) were obtained numerically on a Macintosh
II minicomputer as functions of the normalized frequency kd < 10.0 for various values of B/d; while x <
min[yy,¥2), kf was kept less than 0.5 for Figs. 1-3, it is less than 0.99 for Figs. 4 and S. Fig.1 shows the
calculations for B/d = 10-8, For B/d < 104, the roots for the two sets of modes did not appreciably differ
from each other; furthermore o) d and orpd were approximately equal to integral multiples of #/2. The effect
of chirality became numerically appreciable, however, at B/d = 10°3, although the differences between the
roots for the two sets are still small enough to be appreciated on a graph.

Shown in Figs. 2 and 3 are the roots xd of the dispersion equations (12c) and (13c), respectively, for B/d
= 102, The root structures are now different for the two sets, and particularly so when kd is high. When p/d
increases even further, the differences are even more telling, as illustrated in Figs. 4 and 5. Thus it is only at
the higher frequencies, and for a higher degree of chirality as characterised by larger values of IBl, that the
effect of the chirality of the medium becomes significant.
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Figure 2. Solutions xd of the dispersion equation (12c) of the first set at B/d = 10-2; kB <0.5.
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Figure 3. Solutions xd of the dispersion equation (13c) of the second set at B/d = 10-2; kf <0.5.
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Figure 4. Solutions kd of the dispersion equation (12c) of the first set at B/d = 10°1; kB £0.99.
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Figure 5. Solutions xd of the dispersion equation (13c) of the second set at B/d = 10-1; kB < 0.99.
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Errata:
PROPAGATION IN A PARALLEL-PLATE WAVEGUIDE

WHOLLY FILLED WITH A CHIRAL MEDIUM
VIJAY K. VARADAN, AKHLESH LAKHTAKIA and VASUNDARA V. VARADAN
Department of Engineering Science and Mechanics
and
Center for the Engineering of Electronic and Acoustic Materials

The Pennsylvania State University
University Park, PA 16802.

Equations (9), (10a), (11a) and (13a) of the subject paper [1] contained typographical errors. The correct
versions are as follows:

0=[{ alyl‘l + oczy;l} {1- expli2(a. + o )d]} + {ozlyl‘1 —~ azyz'l} {expli2o: d]} - expli2a d] }]x

[{(xlyl‘l + (xzqgl} {1- exp[i2((xl + ocz)d]} - {(xlyfl - (xzygl} {exp[i2(xld]} - exp[i2a2d] 1.

)
0= ({077 + 0,7} {1 - expli2 (o + a)dl} + {ony; — 0%y } {explizen,d]} — expli2ar,dl} ],

(100)
0=[{ay; +0,,) {1-expli2 (o + 0,1} = (o7, = 04y } {explizer,d]} - explizar,d]}],

(11a)
Q1 = explikx] yil {-ioz1 sin(a,z) e, + xcos(a, z) e, - 1Y, cos(a,z) ey) , (13a)
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