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Continued fractions have a rich tradition in the theory of numbers; e.g., non-terminating con-
tinued fractions represent irrational numbers. It will be shown that a class of continued fractions
possess the property of self-referential decomposition, and their interpretation in the form of non-
terminating ladder circuits gives rise to fractal immittances with potential analogies to rough
surfaces, thin cermet films, as well as to the internal void network structure of thick films. -

Introduction

The motivation for this work comes from number
theory: the representation of irrational numbers in the
Stieltjes continued fraction form, and which has al-
ready inspired the development of ladder circuits [1].
Continued fractions have recently been used in under-
standing fractal quantization of particles in one-
dimensional potentials with incommensurate periods
[2], as well as in two-dimensional electron gases [3]: a
particularly appealing and simple interpretation of
the relevant Hamiltonian has been given by Chao [4].
Continued fractions have also been applied in examin-
ing the frustrated instabilities of active optical resona-
tors [5].

Although continued fractions have seen some use in
the characterisation of the rough surfaces of real mate-
rials [6,7], they have not been applied yet to the
inhomogeneous internal structure of materials. It will
be shown that specific exampiles of the resulting ladder
circuits have fractal immittances with potential ana-
logies to both cermet thin films and films with internal
void networks; and, hence, to the related film proper-
ties.

* Department of Engineering Science and Mechanics.
** Materials Research Laboratory.

Reprint requests to Prof. R. Messier, Engineering Science
and Mechanics, 265 Materials Research Labroatory, The
Pennsylvania State University, University Park, PA 16802,
USA

Continued Fractions and Quadratic Irrational Numbers

Any rational or irrational number can be written
down in the continued fraction form as [8]

1
D=ay+

a; +
a, +

{ay,a,,a,,a;,.. 1

1
a+..., 1)

with ag, a,, etc. being positive integers [but see Ap-
pendix]. The continued fraction is finite in size when
it represents any rational number p/q, with g, being
the integral part of the ratio p/q; it turns out that every
rational number has exactly two such representations
[9]. On the other hand, irrational numbers have con-
tinued fraction representations which are infinite in
size. Of these irrational numbers, there is a class of
quadratic irrational numbers which are solutions of a
quadratic equation. A theorem due to Lagrange [10]
states that the continued fraction expansion of any
quadratic irrational is periodic after a certain state,

e.g.,
J15=3,1,6,1,6,1,6,...),
V31=¢51,1,35731,1,10,1,1,3,53,1,1,
10,1,1,3,5,3,1,1,10,...),
(24— /15}/17={1,5,2,3,2,3,2,3,....

It is the representation of quadratic irrational num-
bers which is of particular interest in the present con-
text. The simplest example is the number

QW) =<0,y pt,...5; u>0, vl
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in which we will accept u as any rational number; Q
can achieve two numerical values via the equation
0 = 1/(1 + Q). The next example is the number

Q(Ml’ ,u2) = <0, /-‘19 /—tz, #1’ ﬂz, ...>;
His 2> 0, (3

which too can achieve two numerical values via the
quadratic equation u; Q% + p, 4, Q — p, =0.

This latter function Q(u,, u,) forms the basis of the
work reported here. We will remove the restriction
that u, and u, be real positive rational numbers, and
let them represent (complex) impedances Z and ad-
mittances Y; we will also assume [see Appendix] that
all continued fractions are either finite in size or they
converge. The first fundamental form comes out when
weset u, =Y, =1/Z, and p, = Z,=1/Y,, so that

1
2(%,,Z,)=0+
Y, +

1
1

Y, +..., @

Z,+

and Q(Y;,Z,)+ Z, can be interpreted as the im-
pedance of the “series-parallel” circuit shown in
Figure 1a. The second fundamental form comes
around when p, = Z, and g, = Y, so that

1
0(Z,, ) =0+

Z,+

Y, +

1
1

Zy+... )

and Q(Z,, ¥,) + Y, can be interpreted as the admit-
tance of the “parallel-series” circuit shown in
Figure 1b.

From the preceding paragraph, it is immediately
obvious that Q(Y,, Z,) + Z, and Q(Z,, Y,) + Y, are
nothing but the immittances of ladder circuits [1].
Usually, however, ladder circuits are terminated in
some prescribed fashion; thus, their immittances are
“closer” to rational numbers than to irrational num-
bers.

Circuits of Infinite Size: Impedances

There is no restriction on ladder circuits that they
be terminated after some number of stages, and we
seize upon that idea to generalize Q(Y,, Z,) + Z,. Our
basic building blocks are two impedances Z, = 1/Y,
and Z, = 1/Y,, and the circuit will be constructed in a
sequential manner. At the zeroth stage, these imped-

(a)
Z -

Fig. 1. Ladder circuit representation of (a) (Y, Z,) + Z, in
the “series-parallel” form, and (b) Q(Z,, Y,)+ ¥, in the
“parallel-series” form.

ances are connected in series, and
Z(O) = Za + Zb‘ (63)

Then Z, is shorted by N, parallel branches, each of
which carries an impedance p, Z, and g, Z,, where p,
and g, are appropriate numbers such that p, Z, and
g, Z, are realizable. Consequently, the impedance of
the circuit at this stage can be represented by

Zw—z, 41

N,
Y, 1

—_
PZ,+9,Z,. (6b)

In the next stage of growth each of the impedances
4, Z, is shorted out by N, parallel branches, each
having an impedance p, Z, + g, Z,. Thus, the circuit
impedance at this stage is given as

=2z, + !

N,
Y, +

1

plzn+

Yo/q, + - (69)

2
P2Z,+4,2,
This process continues ad infinitum. Provided the real
and the imaginary parts of the sequence {Z®} con-
verge, it can be said that

Z'® = Lim Z® (6d)
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will be the impedance of the circuit so obtained. There
is a pattern immediately obvious in the development
of this circuit. As an example, let N,=N and
pi=q; =a' Vi>1. Then, it is easy to verify that

ZO=2Z,+1/[% +(N/a Y¢"1]; i>0, (Ta)

in which Y® = 1/Z% Vi > 0. Provided (6d) holds, then
it can be easily seen that Z‘™ can be obtained as a
solution of the quadratic equation

[ZF Y, + [Z°) {N]a - Z, Y, — 1}

—Z,N/a=0. (7b)

This scheme for generating Z®’ can be easily ran-
domised by randomizing the selection of N;, p; and q;.
It may be that some of the circuits will turn out to be
fractal, and others may not be so; and we are a priori
unable to decisively rule on the outcome. Instead, we
will give four examples which will be shown to have
fractal impedances in the frequency domain, pro-
vided some specific conditions have been satisfied.
These cases are:

Circuit ZRC: Vi=1,N,=N,p,=d\, q;=1; a>1,;
Z,=Rand Z,=[jowC]™".

For this circuit, by substitution of these conditions in
(6) and computing Z‘® it can be shown that the fol-
lowing scaling relationships in the frequency domain

arise:
Z®(w) =R+aZ™(aw) (8a)
IN+aljoC1Z®@w)] ™",
Z)(wfa) =R+ aZ™ ()
‘IN+[joClZ™(@)]™'. (8b)

Circuit ZCR: Vi>21,N,=N,p,=d',q;=1; a>1,
Z,=[jwC] !and Z, = R.

ZNw) =[jwC]™!+aZ"™(w/a)
[N+ R 1Zw/a)]"t, (9a)
aZ™@w) =[jwCl ! +aZ™ (w)
IN+R1Z® @) ©Ob)

Circuit ZRL: Yi=1,N,=N,p,=d’, q;=1; a>1;
Z,=Rand Z,=jw L.

Z) (w) =R + aZ'™ (w/a) (10a)
[[N+aljoL]™' Z® (w/a)] !,
Zaw) =R+ aZ" ()

‘IN+[joL] ' Z™ ()]~ (10b)
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Circuit ZLR: Vi>1,N;=N,p,=d,q,=1; a>1;
Z,=jowLand Z,=R.

Z™® () =joL+2Z"(aw)

AN+ R 'Z® @)™, (11a)
aZ™ (w/a)= jo L+ aZ' (w)
[N+ R 1Z=)(0)]" (11b)

It should be noted that in all of these four cases, the
parameter a assumes a special status: as the discrimi-
nant for scale over the frequency range w. To further
elucidate the self-referential character of such circuits,
consider the case when N =1 and when Z, as well as
Z, are arbitrary impedances. Then, it is possible to see
that while Z® = Z, + Z,, the higher order approxi-
mants can be set down compactly as

Z9=[Z292,;+aZ,Z" + Z,2,]
aZ,+ Zy+z,7Y P21, (12)
in which

zy,1 =2y, (13a)
but
2,i=Zyl@*Z, + 23] [P Z, + Zy + 2, ] 7Y,
i>2.(13b)
But the impedance functions z, ;, i =2, can them-
selves be further simplified with the help of the im-
pedance functions z; ;, i = 3, as

23,2 =2, (14a)
but
2 =Z00* Z, + 23,) (@ Z, + Z, + 23],
i=3.(14b)
It then becomes possible to observe the self-affinity of
these circuits by defining the functions

2, =2y, (15a)
Zj;= VAN AR AR S (15¢)
NN Z,+ Zy+ 20,7 iz 1L

Circuits of Infinite Size: Admittances

The aforementioned circuits are of the “series-
parallel” form such as Q(Y,, Z,) + Z, in (4). Because
of duality, it is easy to visualise “parallel-series” forms
such as Q(Z,, Y,) + Y, in(5). Our building blocks here
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will be two admittances Y, =1/Z, and Y, =1/Z,. In
the zeroth-stage these admittances are connected in
parallel; then,

YO =Y, + Y, (162)

Next, N; branches connected in series are inserted into
the branch containing Y, each branch of admittance
P1 Y, + q, Y,. Consquently, the admittance of the cir-
cuit at this stage can be represented by
) 1
Y=Y +
Z, + Ivl_.__

Y ta Y, (16b)

where Z, =1/Y,. In the second stage, N, branches
connected in series are inserted into the branches con-
taining q, Y, each branch of admittance p, ¥, + q, Y;;
hence,

Y‘2’=Y,,+1

N,

Z,+ 1

Y+

Z,/ +N2
o/ Y, +q, %’

(16¢)

This process also continues ad infinitum. Provided the
real and the imaginary parts of the sequence {Y®}
converge, it can be said that

Y(® = Lim Y® (16d)
will be the admittance of the circuit so obtained. As a
counterpart to (7a), if N;= N and p; = q, = a’ Vi > 1,
then

YO =Y, +1/[Z, + (N/a) 24~ ];

where Z® =1/YP ¥i > 0.

The “parallel-series” counterparts of the circuits
identified above as ZRC, etc., along their respective
frequency scaling relationships, are as follows:

i>0, (17)

Circuit YRC: Vi21,N;=N,p,=d',q,=1; a>1;
Y,=R 'and ¥, =jwC.

Y™ (w) =R"!+a¥" (w/a) (18a)
IN+aljoCl™! Y™ (w/a)] !,
Y (aw) =R"!+a¥™(w) (18b)

IN+[joll™! Y )]~

Circuit YCR: Vi21,N=N,p,=d', q;=1; a>1;
Y,=jwCand Y¥,=R7!.

YNw) =joC+ Y (1w)

N +RY®@a)™!, (19a)
aY® (w/a)=jwC + a Y™ ()

"IN+ RY®™) ()]~ 1, (19b)

Circuit YRL: Vi21,N;=N,p,=d\, q,=1; a>1;
Y,=R 'and Y, =[jo L] .

Y@ (@) =R"!+a¥Y™(ae) (20a)
IN+a[joL] Y™ (aw)]™!,

Y (wja) =R+ aY"(w)
‘IN+[joL] Y®(w)]™!, (20D)

Circuit YLR: Vi>1,N;=N,p;,=d',q;=1; a>1;
Y,=[joL]"'and Y,=R" 1.

Y () =[joL]™! + Y (w/a)
‘[N + RY™) (/a)] !, (21a)
aY®@w) =[joL]™ + Y™ (w)
IN+RY®(@)]"'.  (21b)

By making use of the interchanges Z<+ Y, R<sR~!
and L < C, it is easy to show that the circuits YRC,
YCR, YRL and YLR are the duals, respectively, of
the circuits ZRL, ZLR, ZRC and ZCR.

Discussion

For the remainder of this paper, we will confine our
discussion to the circuits ZRC and ZCR, whose scal-
ing behavior are, respectively, identified by (8a, b) and
(94, b); furthermore, we shall drop the superscript (c0)
on Z.

First, the circuit ZRC and a couple of its possible
applications. Shown in Fig. 2 are the plots of the real
and the imaginary parts of Z® as well as the phase
angle ¢! = arctan [Im {Z"}/Re {Z®}] as functions of
the frequency w; the building blocks are R =1kQ and
C = 1nF. To be noted is the fact that Z can be extra-
polated from these graphs. It can be seen that in the
low-frequency regime (w RC <1), both the real and
the imaginary parts of Z are proportional to ¢,
where { =1 —In(N)/In(a) = 1 — D, D being the fractal
dimension [12]; indeed Z(w) is actually proportional
to (i w) "% As the frequency increases, then this law is
no longer followed: for the high-frequency regime
(w RC » 1), the real part of Z approaches the constant
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Fig. 2. Plots of Re {Z®/R}, — Im {Z?"/R} and phase angle ¢® = arctan
[Im{Z?P}/Re{Z™}] against frequency w for the circuit ZRC. The
building blocks R = 1kQ and C = 1 nF; the branch number N =2
and the branching parametera =5,i =2 (---),5(-+-), 7 (--—-— ) and
10 (——). Note that a > N? and that for o RC < 1, Z{w) ~ (iw) %,
where { =1 — In(N)/In(a).

wRC

Fig. 3. Plots of Re {Z¥/R} against frequency w for
the circuit ZRC. The building blocks R =1kQ
and C=1nF; i=2(---), 5(---), 7(==-- ) and
10 (——). Three cases have been considered: (a)
a=2,N=5,(b)a=N=5and(c)a=4, N=2.
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resistance R and the imaginary part of Z decays as
o~ L. But the imaginary part of Z is very small when
compared to its real part; hence, Z is almost purely
resistive at high frequencies. This behavior of the ZRC
circuit was first noted by Liu [6] for N = 2, and the
low-frequency, constant-phase-angle response of the
ZRC circuit makes it a plausible model for some elec-
trode surfaces [11,13].

It should be noted that in the calculations of Fig. 2,
a > N. Furthermore, In(N)/In(a) is a fractal dimension
of the ZRC circuit and lies between 0 and 0.5. Since
the circuit has been used to encode in it the topogra-
phy of an electrode surface, this consideration is justi-
fied [7]. From the point of view of circuit topology,
however, there is no reason to confine N <a. In
Figs. 3 and 4, the calculations of Fig. 2 are repeated
for varying values of the ratio a/N. From these and
other studies, it appears that the low-frequency,
constant-phase-angle response of the circuit ZRC is
confined to the regime a > N*. When N > a, however,
another interesting characteristic appears: whereas
for o RC »1,Z = R, even in the low-frequency regime
Z is almost purely resistive. As the parameter a is
increased relative to N2, this behavior is supplanted
by the “fractal” behavior observed for a > N2.

As an application of the circuit ZRC, we now con-
sider the reflection coefficient R (w) when a planewave
is normally incident on an infinite plane [14] whose
impedance can be modelled by that of the ZRC cir-
cuit;

R(@) = [Z(@) — 1ol [Z(w) + 0] " (22)

This reflection coefficient is plotted in Figs. 5 and 6
with R =200Q and C =100pF; the free space im-
pedance, 1, =120 Q > R. In Fig. 5 the condition
a > N? has been fulfilled. For this case, it appears that
in the low-frequency range, the reflection coefficient is
almost equal to + 1, but in the high-frequency regime
it acquires a constant negative value. Neither of these
results is surprising because for o RC < 1, |Z (w)| > 1o,
the free-space impedance; while for w RC » 1, Z(w)
=~ R < 1,. In other words, at low frequencies the im-
pedance plane behaves as if it were a perfect magnetic
conductor (PMC), but becomes an insulator at higher
frequencies. It is to be concluded, therefore, that the
ZRC circuit with a > N? is a plausible model for
PMC-insulator transition. When a < N?, the circuit
ZRC also provides a model for such transitions, but
somewhat of a different kind. Shown in Fig. 6 is the
case when a = 2 and N = 5. From this figure, it is to

0°—
-20°4 / ;:": >
«40° 4= ,- ‘
-60°-+ i

-80°1 / g

-100° +——f——+——+—+—

< P

-100° 4+——————t+——+——
108 10® 107% 102 1% 102
WRC .
Fig. 4. Plots of phase angle ¢ = arctan [Im {Z"}/Re {Z"}]
against frequency w for the circuit ZRC. See Fig. 3 for other
details.

be noted that both in the low- and the high-frequency
regimes, R (w) is almost always a negative real number
(except for the static case when it equals unity), which
is because Z(w) is almost purely resistive in these fre-
quency ranges. Thus, this appears to be a case of
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1.0 — —0°
0.8 1
0.6 -1 __500
0.4 1
—-100°
0.2 A
--150° Fig. 5. Magnitude and phase of the
reflection coefficient R(w) given as a
function of w by (22). The impedance
Z(w) of the ZRC circuit is approxi-
mated by Z“%, no difference being
0.1 ! ! } l 200*  observed when Z” was used in place
-8 '-6 b 4 '_2 | 0 2 of Z(w). The parameters R = 200Q,
10 10 10 10 10 10 C=100pF, a=5, and N =2.
wRC
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1iber 4 Fig. 6. Magnitude and phase of R(w) given as a
hich E function of w by (22). The impedance Z(w) of the

e circuit ZRC was approximated by Z”(-—-) and

fre- ~200° " ! T } T — ! —] ZU9(——). The parameters R =200Q, C =
e of 1078 1076 1074 1072 10° 102 100pF,a=2,and N=5.
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Fig. 8. Same as Fig. 7, except a=2 and N = 5.

uit ZRC was approximated by Z"'® with R = 1kQ,
2. The capacitance C, = C/2 (--—--), C(—) and

100pF, a=5and N

2C(---).

Fig. 7. Magnitude and phase of G(w) given as a function of w by (23). The

impedance Z(w) of the circ
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Fig. 9. Plots of Re{Z“/R} against frequency w for the
circuit ZCR. The building blocks R =1kQ and C =1nF;
i=2(~--),5¢-)7(—~ ) and 10 (——). Three cases have
been considered: (a) a=9, N=2,(b)a=5, N =2, and (c)
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Fig.10. Plots of phase angle ¢ = arctan {Im {Z"}/Re {Z}]
against frequency w for the circuit ZCR. See Fig. 9 for other
details.
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insulator-insulator transition, perhaps typifying a cu-
rious (relaxation?) mechanism in which the dielectric
constant changes from a low value to a higher value
as the frequency increases [15,16]. Parenthetically, it
should be noted that this second case can also be
interpreted to be symptomatic of a relaxation in which
the (magnetic) permeability changes from a high value
to a lower one with the increase in frequency [17].
Both of these impedance plane models merit further
attention. It must also be noted that the scattering
plane need not be planar: it is possible to think of
a rough, bimaterial interface as a perfectly smooth
plane possessed with a space-dependent impedance
[18]. This impedance is not only a function of the
geometry of the actual (rough) surface, but also of the
frequency w and the field incident on the surface.

Finally, the circuit ZRC may be used as part of a
filter, as shown in the insets of Figs. 7 and 8. For these
two figures, the open-circuit voltage gain was com-
puted via

Glw)=Z(0) [Z(w) + (jw Co) 7', (23)

in which Z(w) was approximated by Z1%(w),
R=1kQ and C = 100pF. The capacitance C, was
assumed to have three values: C, = C/2,Cand 2C.In
Fig. 7, a=5 and N =2, so that a > N?; and in the
latter figure, a =2 and N =5 so that a < N2 It is
to be noted that for either case, G(w)=~1 when
o RC > 1, so that the high frequencies are passed on
by the filters without any distortion. The low frequen-
cies (w RC « 1) are, however, attenuated, so that these
filters are essentially high pass; furthermore, the roll-
off appears to be rather insensitive to the capacitance
ratio C,/C. But the roll-off in Fig. 7 is about
8.4dB/decade, and in Fig. 8 it is about 20 dB/decade,
which suggests that as an element of these filters, the
circuit ZRC with a € N2 is certainly the more efficient
one. This is because, as evinced by Fig. 3, the circuit
ZRC with a < N? behaves much like a pure resistance
in both the low- and the high-frequency ranges.

Just as the response of the circuit ZRC is dominated
by its real (resistive) part, the circuit ZCR is dominat-
ed by its imaginary (capacitative) part. Shown in
Figs. 9 and 10 are the plots of the real part and the

1.0
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| | |
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\
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W
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-150° ——~ ‘N Fig. 11. Magnitude and phase of the
\\\9 reflection coefficient R(w) given as a
b ~o S ~o function of w by (22). The impedance
D Tttt X Z (w) of the ZCR circuit is approximat-
ed by Z"9, no difference being ob-
-200° . | ! ] i served when Z'” was used in place of
2 | 0 ! 72 ' | ! l6 Z(w); R=200Q, C=100pF. The
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phase, respectively, of the approximants Z® for some
circuits ZCR; the building blocks are R = 1kQ and
C = 1nF. To be noted is the fact that in the static limit
@ — 0, Z(w) is almost purely capacitative. Further-
more, Re Z(w) = R at low frequencies (wRC < 1), but
for o RC > 1, it appears that Re Z (w) is proportional
to w . When a > N2, then { = In(N)/In(a), which is a
number less than 0.5; as the ratio N /a increases, how-
ever, { does so too and achieves values higher than
unity. For a > N2, the impedance of the circuit ZCR
also scales as (iw) ™ for @ RC > 1, but this relation-
ship becomes slightly imprecise in its phase when
a» N2 On the other hand, when a < N 2, then both in
the low and the high frequency limits, Z () is almost
purely capacitative.

Using (22), the reflection coefficient R(w) is com-
puted in Fig. 11 for a planewave normally incident on
an infinite plane whose impedance is modelled by the
circuit ZCR; R = 200Q and C = 100 pF. It is appar-
ent from this figure that, qualitatively speaking, there
is no difference between the cases (@) a> N? and (b)
a < N2 In the low frequency range, R(w) tends to-
wards +1; and in the high frequency regime, R(w) is
approximately equal to negative unity. Both of these
observations are consistent with the capacitative na-
ture of the circuit ZCR. Also, it appears that the im-
pedance plane behaves as a perfect electric conductor
(PEC) for @ RC » 1, so that the circuit ZCR models
PMC-PEC transitions, regardless of the specific val-
ues of the branching parameters a and N. Pertinent to
the scattering of acoustic waves, this can also be inter-
preted as a transition from an acoustically hard sur-
face to an acoustically soft one.

The open-circuit voltage gain G(w) of the filter,
shown in the insets of Figs. 12 and 13, has been com-
puted via the relationship (23). For these calculations,
Z(w) of the circuit ZCR was approximated by Z!!%(c),
R =1kQ and C = 100 pF. The resistance R, was as-
sumed to have three values: R, = R/2, R and 2R. In
Fig. 12, a=5 and N =2, so that a > N?; while in
Fig. 13,a <« N*and a = 2 with N = 5. It is to be noted
that for either case, G(w) =~ 1 when wRC < 1: this im-
plies that the low frequencies are passed on by the filters
without any significant distortion. On the other hand,
the high frequencies (wRC > 1) are attenuated, the
attenuation being rather insensitive to the ratio R,/R.
But this roll-off rate in Fig. 12 is about 8.5 dB/decade,
while in Fig. 13 it is almost 20 dB/decade. This sug-
gests that the use of the circuit ZCR with a < N2 is
certainly more efficient for these low-pass filters.

There are several envisioned applications of this
mathematical formalism to the modelling of real thin
film materials. First, it has already been shown that
the ZRC circuit is a plausible model for the interfacial
impedances of rough electrode surfaces in electro-
chemical cells [6].

Second, cermet films are mixtures of metallic and
insulating materials which form a fractal [19-21]
sponge-like connected network of either the metallic
or the insulator phase, depending upon the concentra-
tion of the metal. A test for whether such materials are
analogous would be to measure the reflection coeffi-
cient of thin (~100- 500A) cermet films when a
planewave is normally incident and compare the re-
sults with applicable formulas [14] similar to (22). The
use of the ZRC and the ZCR circuit impedances to
simulate the impedance of an infinite plane should
turn out to be analogous to the metallic and the insu-
lating cermet states [20], respectively.

Lastly, for thicker films (1-100 H) of essentially a
single-phase material prepared under conditions of
low adatom mobility, it has been demonstrated that
the top surface is cauliflower-like and is directly
related to a conical void network structure [22]. Al-
though these void networks appear fractal, there has
been no quantitative description of them [23]. The
present work suggests ways to test and measure the
fractal nature of such films. The impedances of the
void regions and that of the “bulk” conical regions are
certainly different; the film properties should have
analogy to both the ZRC (ionic diffusion and electri-
cal conductivity) as well as the ZCR (permittivity)
circuits.
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Appendix: Generalized Continued Fractions

Rigorously speaking, a continued fraction should
be defined [24] through an ordered set of numbers
{a,}, {b,} and {,}, where A9, ay,85,...and b, b,,...
are complex numbers with all b, # 0, and where {{,}
is a sequence in the extended complex plane. The
numbers {, approximate the continued fraction z,and
assuming that the continued fraction is infinitely long,

z= Lim¢,, (A1)

n-— o

1]

|
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where

4 ba, . (A2)

The convergence (A1) is subject to some conditions,
which have been discussed in detail in Chaps. 3 and 4
of the book by Jones and Thron [24]. It will suffice for
the present purposes to indicate here that the se-
quence {{,} does converge to z, provided

la | = [b,l +1; n=1,23,.... (A3)
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