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ABSTRACT

Causal, time-dependent Green's functions have been derived for lossless, uniaxial dielectric media, and
their properties investigated. The obtained Green's functions are then used for the solution of the initial value
problem, as well as for obtaining the radiated fields of time-varying, spatially concentrated sources.

1. INTRODUCTION

With the recent proliferation in the use of anisotropic materials for a variety of applications, researchers
have begun to focus attention on the electromagnetic theory of such media. A reasonable foundation for this
work was laid around a quarter of a century ago by Post [1], and his work was later extended by Kong and
Cheng [2,3] and Krowne [4]. Missing from these and other works have generally been the time-harmonic and
the time-dependent Green's functions, in usefut and exact forms, which permit "easy" solutions of radiation
and scattering problems.

In this paper we will concentrate on lossless, uniaxial dielectric media. The three-dimensional,
time-harmonic electric Green's function for these media have been derived by Chen [5,6]. Because
electromagnetic problems frequently require the utilization of magnetic sources, we have recently added to
Chen's analysis by deriving the magnetic Green's function for the time-harmonic case [7]. Problems of
practical interest, however, involve the radiation, propagation or scattering of time-limited signals, which can
be neither periodic nor analytic functions of time. Hence, the development of causal, time-dependent Green's
functions is of great importance. Therefore, in the sequel we have derived the time-dependent Green's
functions for homogeneous, uniaxial dielectrics, and explored their characteristics. The derived Green's
functions have then been used for the solution of the initial value problem, as well as for obtaining the
electromagnetic fields radiated by some elementary, spatially concentrated sources.

2. TIME-DEPENDENT DYADIC GREEN'S FUNCTIONS

A homogeneous, uniaxial dielectric medium is characterized by one optic axis, i.e., its relative
permittivity can be expressed in dyadic notation as [6]
t= ell +(g-¢)ee. (1a)
Here, ¥ is the idempotent, e is the unit vector parallel to the optic axis, the dyadic inverse of ¢ is given as
-1

¢ = (Ue)T+((Ue)-(1elee,, (1b)

and it is assumed that both € | and g|| are real and constant. Since D(r.t) = £4¢ *E(r,t) and B(r.t) = poH(r,t)
are assumed, the last two Maxwell's equations are given as

VXE(r,t)=-p {0/} H(r, t)- K(r.1), (2a)
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VxH(rt)=¢g ¢ {o/ot} E(r,t) + J(r,0), 2b)

in which &, and p, refer to free space; J and K, respectively, are the electric and the magnetic source current
densities. After some manipulation of (2a,b), it can be seen that the time-dependent electric and magnetic
fields obey the following partial differential equations:

Vx Vx T+ 6 (370} €1 Er.) =438 Je.) -V xKEn, O

[V x€ o VxT+p e (F200) 1]+ Hir) =€ (OROKED + V X[ Il @)

The solutions of these two equations are sought in the forms

E(rp= Hj d3rJ dt[B (rr b t) e Jr t) + & (rr tt)  K@t)l, )

H(r,)= _m d3rJ d[Brr b 1) Jrot)+ B rr tt) K@ )L (6

which satisfy the principle of superposition, and where @1, etc., are the time-dependent Green's functions in
dyadic notation. In this paper, it should be noted that the vector operations begin from the right-most one and
proceed leftwards; boldface letters represent vectors; ey, etc., are unit vectors; and the Gothic letters denote
dyads.

The time-harmonic electric Green's function has been derived by Chen [5,6], and the corresponding
magnetic Green's function has been derived by us elsewhere [7]. Thus, on assuming the time-dependence
exp[-iot] and noting that the medium is spatially invariant, it is easy to see that (3) and (4) can be
transformed, respectively, to

E(re)= J.‘” dsrs[dBe(i'-rs,w) * [iop J(r o)) - {t_l- Vx8 (rr o) K o) 7

H(r,0) = md3rs[{v x B (r-r ,0) + J(r,0) + e, 8_r+ ,0) Kr,0). @

The time-harmonic electric and the magnetic Green's functions, respectively, are given as

4146_1 @e(R,m) = [estP1I t_l + VV/kZ] gt X R,0), ()]
41r\/e_l dBm(R,(o) = el{[ el:l + VVIkZ] g, -XR,0)}, (10

while

XRo)=(eg - g)[(Rxe)Rxe)/Rxe)]

+Rg -Rg)T-ee ~2Rxe)Rxe)/Rxe)]/k®Rxe), (1)
41t,/(sl) Vx8,(Ro)=¢ (g,-8) Ree)le,x Rxe)Rxel/Rx e)'+

+e (g,-g) Ree) R xelle,x Rxe)]/(Rxe)' -
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-2 . 2
-eigoRO (1-ikR) [Rx (R xe)][Rxe]/(Rxe) +

+e &g R, (1-kR)[Rxe ] [RxRxe)]/(Rxe)’, (12)

- 41\[{ t-lo V x GBm(R,m) = el(ge- g,) (Re ec) [ec X (R x ec)][R xe]/ R x ec)4+
+e (g-g)(Ree)[Rxe]le, x Rxe)]/ R xe)' -

~e2g R, (1-ikR) [Rxe IR xR x e)]/ R xe)’ +

-2 . 2

+eg g R (1-kR)RxRxe)] [Rxe]/Rxe)". (13)
With reference to the expressions (9) - (13), the following notation holds:
R=r-rg k = @V(egpy)

8o = explikR /R, ge = exp[ikR /R,
R, = V[e,;R*R], R, = V[gy(Rxe)2 + €, (Reey)2).

It should be noted that the subscript ‘o’ refers to the ordinary waves, and ‘e’ pertains to the extraordinary
waves (except for the time-harmonic electric Green's dyadic &), as is customary in crystal optics. The
ordinary waves are the more familiar of the two because far from the source, an extraordinary wave still has
an electric field component in the direction of the wave-normal, which the ordinary does not have.
Furthermore, the phase velocity of an ordinary plane wave is independent of the direction of propagation,
while that of an extraordinary plane wave depends on the propagation direction [6,7]. In other words, while
the ordinary wave disregards the anisotropy of the unaxial medium, the extraordinary wave is sensitive to the
difference between € and g)).

Returning to the time-dependent case, the Green's dyadics @, etc. can be obtained by using temporal
Fourier transforms as

oo+ iA
@l(R,t,ts) = (1 27) J. do(w) exp[ -iaft -t )] GBe(R ,®), (14)
—o + 1A
oo +iA
@Z(R ,t,ts) =-(112x) J doexp [t - ts)] [ t—l' V x @m(R,O))] ) (15)
—oo + iA
oo 4 A

433 ®R.Lt)= (12r) j' de exp [Ho(t -t )] [V x @e(R,(o)], (16)

—os +JA
oo+ iA

B,R L) =(e/2n) J da(io) exp| - ia(t—t)] 8_R,0). (17)

-0 + 1A
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Physical considerations require that the solutions of (3) and (4) must exhibit three properties: (i) the medium
is spatially invariant, (ii) the medium is temporally invariant, and (iii) the electromagnetic ficld must be
causal. The first property has already been satisfied by the time-harmonic expressions (9) - (13), and the
satisfaction of the second property is apparent in (14) - (17). The third property, i.e., causality implies that
@) (R,tty), etc., must be identically zero for t < tg. This is obtained in (14) - (17) by invoking analytic
continuation from real to complex ® by moving the integration path above the real axis in the complex ®
plane; A > 0 to ensure avoiding the pole singularities [8,9].
By substituting (9) - (13) in (14) - (17), and using the definitions [10]

&) = (l/u)jdm cos (@), (18)
0
u(t)=(l/2)+(l/1t)J.d0)sin(0)t)/(0, t20; u()=0,t<0, 19)
0

respectively, for the Dirac delta function &(t) and the unit step function u(t), it can be shown that

ine )V (1) B R7)=-[55) + R 8z) + @R w(r)] € & /R)E

+[8(5) + 3R ) 8t) + IR )’ u(t)l (€ & /R) E ®)
+1(ey/R) 3'@) - (€ R ) & ) BR) + [8(z,) - 8(2)] ER), 20)

4n(e )" 8,(R;0) = (B )R- BT )R | B R)-

e R, [8(5,) + R ) 8' ) € R) +

g R.’18(t) + R o) 8 )] F R), @1)

an(e )" B,R,0) =[5, IR - S )R ] B R)-
e R; '[85 + R Jo) 8z )| S (R) +

gk, 186 + R o) §(x )] ER), @)
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i) "€)” BRD)=~[8'(5) + GR) &)+ R ) @))€ /R) ¥
+[8'(x) +3CR) 8(5) + 3R )" u(z,)] € R) egey

- (&R 8() - R ) 8'(5)1 B R)-[8(5) -5 € R). (23)

In the expressions (20) - (23), §'(§) = {d/d{}8(L) is the doublet impulse function [10], and for the sake of
convenience, the following notation has been used:

T=t-tg ¢ = (Ho€o) 12,

To=t-ts-Ro/c; Te=t-t5- R/,

er =R/R; AR) = (e,16y/R)[¢-1-R][¢-1-R],
B(R) = [Rxe l[Rxe;] / (Rxey)2; CR)=c[¥-ee. - 2BR)]/ (Rxe)?,

B(R) = Ree) { [Rxe l[ex(Rxe,)] + [e x(Rxe,)] [Rxey)] }/ (Rxep)4,
e(I{) = [Rxec][Rx(Rxec)] / (Rxec)2,
F(R) = [Rx(Rxeo)][Rxec] / (Rxep)2.

It should be noted that 1, is the retarded time for the ordinary field, and 1, is for the extraordinary field.
Furthermore, 8(ty), 8(te), 8'(To) and 8'(te) are switching functions that establish the "wave head" in a given
direction. For the sake of illustration, let the sources J(r,t) and K(r,t) be of the form &(r) 8(t). Then, the
ordinary wave head moves with a velocity

v,=c/ ‘f(el)
isotropically; whereas the extraordinary wave head has a velocity
. 2 2
ve=c/‘l ¢, sin"@ +€ cos 0]

which is dependent upon the azimuthal angle 0 = arctan(Irxecl/(ree.)). Thus, in the direction e, the point t =
1o/c (resp. t = re/c) is the overall wave head when g > € (resp. g <& ). Shown in Fig. 1 are calculated
values of vg/v, as functions of 0 for several values of the material anisotropy parameter g)/€ | .

Next, electric sources J(r,t) = ec J(r,t), where J is at least once differentiable, give rise only to the
extraordinary fields. Likewise, magnetic sources K(r,t) = e. K(r.t) radiate only the ordinary fields. This can
be deduced by noting that B(R)+e;, ER)-¢., B(R)-e; and F(R)-¢, are all identically zero.

The time-dependent Green's dyadics derived here reflect the fact that the uniaxial medium is spatially
reciprocal and possess spatial symmetry, as per the transpose relations,

8 R7)=(6 R 8,R1)=(6,RDI", (243, b)
8,(R7)=(6,R.0)]"; 8, R7)=(6,R )", (245, d)

and the symmetry relations,
dBl R = GBl(—R, T); () (R = () (R, (25a,b)
8R7=-8(R7;  BR7)=-6(R). (25¢,d)
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Figure 1  Computed ratio ve/vy of the wave head velocities as functions of the angle © = arctan
{irxecl/(ree.)} for several values of the material anisotropy parameter g€ .

3. THE INITIAL VALUE PROBLEM

Very often, the spatial distribution of the electromagnetic field at time t = 0 is known, and it is desired
to compute the electric and the magnetic fields at later times, in the absence of other sources. Typically, this
is of interest in EMP propagation problems where the initial field is confined to some finite volume Vg, and
the calculations of E(r,t) and H(r,t) are required fort>0and r ¢ Vq. For that purpose, consider (3) and (4)
in which the source terms have been nulled. Furthermore, let

E,M=Er)l_,; E,(r) = {30t E@t)l . , (26a,b)

Hr)=Hryl g, H,(r) = (3/3t) HE.H 1, , (27a,b)

The temporal Fourier transforms of (3) and (4) should next be taken, bearing in mind that the solution of
the initial value problem should not violate causality; as is apparent from the discussion following (17), the
Laplace transforms may be taken alternatively. In either case, it can be shown that

o +iA
E(r=pe ” d3rq {(1/21!:) j' dax(im) exp[-wt] dBe(R, @)t Eo(rq)}
Yq —o +iA
- o+ iA
+]LE, ‘” dsrq{ (12x) J. doexp[-iox] dBe R,0)¢¢- El(rq) } , (28

q oo + 1A
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oo+ iA
H(rt)=p ¢, Jjjdsrq {(1/21:) J daxio) expl—iat] Gm R, @) * Ho(rq)}
Ve o+ iA
oo +iA
FIE, H er {(12m) J do expl-ie] 8, R,0)+ H,(r)}, 29)
Ve —oo + 1A

with R =r - rgq. On noting the properties of the integral transformations used, and in view of (14) and (17),
the solution of the initial value problem works out to be

B> 0=, [[[dr (8@ e Eo)-6 R0 E@), 0O

q

Hrt>0)= H, :U darq{ 034(R,t) . Ho(rq) - @6(R,t) ° Hl(rq) } , 31
Yq
where
t t
QBS(R,t) = J dt @l [R,¢); () 6(R,t) = J ad 4(R,t). (32a,b)
0 0

Explicit expressions for 85 and B, respectively, are as follows:
ane)'™ (1) B (R = [8() + CR)u(s) + GR ) 7, u(r)] € & /R)E
+[8(5) + 3R ) u(r) + 3CR)’ 7, u(e)] (€ & /R) HR)
+1(&/R) 8(5)~ (€ /R) A5 )1 B R) + ur) -] ER), ()

e )" (€)" R =8z + CR ) ux) + GR )7, ut)] € /R ) T
+[ 8(10) +3R )u(r) + 3(°/Ro)2"o u(t )] (el/R o) €rer

~[(,/R) 85) - (€ /R ) 85,01 B (R)- [u(z,) - u(z)] € R), (34)

in which T =t - Rg/c and 1, = t - Ro/c. Using (2a,b), (26a,b) and (27a,b), alternative forms of (30) and (31)
can also be obtained as, respectively,

Ert>0) = H d’r, {8, Ry et Eyr)-B R0V xHyr) }, ()

q

Hert>0) = H d’r, {8,®R0 - p Hyr)+ BRH+V xE@) ). (6)

q

Journal of Wave-Material Interaction, Vol. 3, No. 1, January 1988
7



Lakhtakia, Varadan and Varadan ' Time-dependent Dyadic Green’s Functions. . . e
4. RADIATION FROM CONCENTRATED SOURCES

With the derivation of the time-dependent Green's functions, it becomes possible to compute the fields
radiated by source current densities using the expressions (5) and (6). In this section, we will consider the
radiation characteristics of several elementary sources which are spatially concentrated at rg = 0, but have
time-dependent excitations. In the sequel, T=t,To =t-ro/cand Ty =t - ro/c, while R =r.

(i) Electric dipole flashing on and off at t = 0. An electric dipole flashing on and off at t = 0 gives rise to
the electric source

Jrpt)=e &r) &), @7
where ep represents the orientation of the electric dipole. The radiated fields can be obtained as

amte) () B = {186) (k) 8'(5) - @) Be)] €., /) €
+[8°8) +3(ch) 8'@) + 3(ch)’ 1)) (e & /1) B (1)
+1(e, /1) 8"(5) - € /1) 8" (¢ )] B (1)
+[0@)-3@)ICm}) e, (383)

ane ) B = (B )h, -8 ) /1] BR)-

er 8@+ () 8" )1 T )+

'3 4 "

g, [8()+ €0 5'@) €M} +e (38b)
in which 8"({) = {d/d{}8'({) is the triplet impulse function [10]. Thus, (38a,b) constitute the response of the
uniaxial medium to an electric impulse, and it should be mentioned that E(r.t) and H(r,t) are identically zero
at large times t such that t > r/c and t > rg/c.

(ii) Magnetic dipole flashing on and off at ¢ = 0. A magnetic dipole flashing on and off at t = 0 gives rise
to the magnetic source
K@ t)=e 8r)8'(t), (39)
where ey, represents the orientation of the magnetic dipole. The radiated fields can be obtained as

ane ) "R = {F @), -8 ) B -e 5 5+ (08N E@+
g1, 180)+ /8T ®} e, (40a)
ante ) ()7 M = {1976 - (o) 8 () - (ch)” 86x)) (€ fr )T

+[8°(5,) + (k) (x) + 3(ch,)’ 85 )) (e ) ve’
+fr,) 8°5,) - (€ fr) 851 B (1)
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+E@)-5@) €@ ) e (40b)
Equations (40a,b) constitute the response of the uniaxial medium to a magnetic impulse, and it should be
noted again that E(r,t) and H(r,{) are identically zero at large times t such that t > re/c and t > rg/c.

(iii) Electric dipole turning on at ¢t = 0. An electric dipole turning on at t = 0 gives rise to the electric
source

Jrt)=e, &) &), @1)
where €p represents the orientation of the electric dipole. The radiated fields can be obtained as

ane)'® (1) o= {186)- o) 55) - k) ur)l e gy /1) €
+[8%) + 3(ch) 81 + 3k u(s)] € & /1) B @)
+lefr,) 8'6,)- (€ f) 8@ B @)
+[31) -3 €} - e, (422)

4n(e )" Her) = { B i, - 86x,)ir ) B R)-€ 1. '[365,) + @0 8515 @)

+&r [80) + () @ €] e, (42b)

Thus, (42a,b) constitute the response of the uniaxial medium to an electric unit step. At large times t such
that t > re/c and t > ry/c, the radiated fields are given by

am € )2 (1) B0 = o)’ e gfr) {3e gD e o rir-T ) € e, @3a)

H(rt) =0, 43b)
which are nothing but the fields radiated by a static electric dipole in the uniaxial dielectric medium. It should
be noted that by setting € | = g); in (43a,b) the field due to a static electric dipole in an isotropic medium can
be recovered [11].

(iv) Magnetic dipole turning on at ¢t = 0. A magnetic dipole turning on at t = 0 gives rise to the
magnetic source
K(rt)=e &r)dt), @)
where e, represents the orientation of the magnetic dipole. The radiated fields can be derived as

an (€ )" E(r, 0 = {3e)hr, - 86,1 B @) - 17 [865) + (6 0) 8 2 )] € )
+,17 BE)+ (O FENT® ) e, (452)

ane )" €)M = {96 - (o) 85 - (o) e )] e fr,) ¥
+[8'(2,) + 3(ch) 8r,) +3(ck)" (sl (€ /1) o’

+1e ) 8'(5) - (€ 1) 5 ) B ®
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+BE) - )IE® | oe . (45b)

Equations (45a,b) constitute the response of the uniaxial medium to a magnetic unit step. At large times t
such that t > re/c and t > 1/c, the radiated fields are given by

E(r,t)=0 (46a)
ame) " €) " BEy =) € ) Dk’ -Tee,, (46b)

which are the fields due to a static magnetic dipole in an isotropic medium having a relative dielectric
constant € [11]. It should also be mentioned that expressions (45a,b), with €| = g, are the same as can be
derived using Wait's analysis [12] for transient magnetic dipoles in isotropic media.
(v) Suddenly initiated time-harmonic electric dipole. The sudden initiation of an electric dipole by a
time-harmonic signal of constant frequency ®;;, can be described by the electric current density
Jrt)= e, 8(rs) cos(@_t)u(t). @n
Substitution of (47) in (5) and (6) yields the radiated fields as

41:(.3)”2 1) Er)=8c) € {e Am-¢ B} e, -t )e ) B e,
+u(t) { ([czr;Z- ®_]sin(@ t)+ cr;l cos(O)m‘I:e)) G ¢
+ (3% 0_Isin(@ 1)+ 3r cos(w_1)) & (1)
-0 g r;l sin(@_t.) B (r) - cos(@ 1) € (r) }. e,

+u(t ) { 0. r;l sin(o_t ) B (r) + cos((omto) ¢ } e, (48a)

(e )" Hed = {36) (& o) €0 -85 ) € fr) T ®) } o,
+u(e) {costo,t) (B /1, + . F (1) -0, % sin@,) T} ve,

~u(r) {cos@ 1) (BO)/1, +e, £’ €M) -0, 1'c sinw,7) €M} e . (@8)

In order to obtain the large-time behavior, terms containing the Dirac deltas in (48a,b) should be nulled,
while the unit step functions should be replaced by unity.
(vi) Suddenly initiated time-harmonic magnetic dipole. The sudden initiation of a magnetic dipole by a
time-harmonic signal of constant frequency wyy, can be described by the magnetic current density
K(r,t)=e_8r)cos(@ t)u(t); 49)
and the substitution of (38) in (5) and (6) yields the radiated fields as

ane )" B = {8 (g k) €()-8x) € ) T @) } e,
+u(t) { cos(® 1) ( B/ I +¢, r;3 @(r)) - g r;zc"1 sin(®_1,) @(r)} ‘e

—u(t) {costo_t) (B()/r, +€, £ FO) -0 e, 'c sin 1) F@)} re . (50a)
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4ne)" e, B =36) € k) {m-T+B®)] e,
-3t) (g, /1) B@)e,
+u(t ) { cos(®_%) (t-:l cr;2[3 r-1-C@)
+sin(@,1) (0,6 1 -1 w-B @l +c@r)” Brim-1)} e,

+ur) {0 g1 sin@_7) Br)+cos@ 1) €@ } e . (50b)

As in the case of the electric dipole of case (v) above, the large-time fields can be obtained by ignoring the
terms containing the Dirac deltas in (50a,b), while the unit step functions are replaced by unity.
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