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ABSTRACT

The sources of left- and right- circularly polarized (LCP and RCP) waves in an isotropic chiral medium
(D =€E + BeVXE, B = pH + BuVxH) have been explored here, as well as the radial and the transverse
components of the electromagnetic fields examined. Auxilliary functions, Q and Q,, for the LCP and the
RCP fields, respectively are defined, and their eigenfunctions set up. The radiated fields of some simple
sources are then investigated.

1. PRELIMINARIES

In 1948, Tellegen [1] proposed the most general constitutive equations for a linear, anisotropic medium,
given as

D =¢gE + {H; B =&E + peH, (1a,b)

in which g, y, § and £ are full, complex tensors, in general. The potency of these constitutive equations [2] is
such that they encompass gyroelectric, gyromagnetic and gyro-electric-magnetic media, as well as optically
active media, and a uniform treatment of all linear media became possible [3-7] for some electromagnetic
problems, Whereas gyro-electric and gyro-magnetic media have been heavily investigated in the past due to
their relevance to magnetoplasmas [8,9] and some classes of artificial dielectrics [10], isotropic optically
active (chiral) media have not been paid much attention to by electromagnetic field theorists. This is largely
because natural optically active substances have fallen in the province of physical chemists. With modern
advances in polymer science [11-13], however, there is reason to believe that artificial chiral dielectrics, active
at the mm-wave frequencies, may become feasible,

In order to describe the electromagnetic properties of an isotropic chiral medium, it is more convenient to
use the constitutive relations [14]

D =¢[E + BVXE]; B =u[H+ BVxH], (2a,b)

than the Tellegen equations (1) because the curl is not a vector under the mirror inversion of the co-ordinate
system; the pseudoscalar chirality parameter § > 0 (resp. < 0) for a right- (resp. left) handed medium, while €
and i, respectively, are its permitivitty and permeability. These relations are symmetric under time-reversality
[15] and duality transformations [16]. In addition, the adequacy of (2) also devolves from studies carried on
optically active molecules [17], as well as from the examination of light propagation in optically active
crystals [18]. In the last decade, Bohren has used these constitutive relations to compute the scattering
responses of some simple objects [14,17,19,20]. Recently, we have followed up on Bohren and investigated
the interaction of electromagnetic fields with planar achiral-chiral interfaces [21] as well as with non-spherical
chiral objects embedded in achiral host media [22]. We have elsewhere [23] given the infinite medium Green's
dyadic [24] and derived [23] a mathematical statement of the Huyghens' principle, and utilized [23] them to
formulate scattering and radiation formalisms pertinent to these media. The present communication reports the
continuation of our work in this area and we shall be considering the sources of EM fields in isotropic chiral
media as well as some characteristics of the radiated fields.
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In an unbounded, source-free region occupied by an isotropic chiral medium, it can be shown that all four
fields -- E, H, D, B -- are divergenceless, and

VxE = 2B E +iop (yk)2 H; VxH = 2B H - iwe (yk)? E, (3a,b)

VxD = v2B D + iwe (yk) B; VxB = 2B B - ioop (k)2 D, (e,d)
in which the parameters k and vy are given by

k= ofep] 2, ¥ =k2[1- k2L, (4a,b)

To be noted here is the fact that k does not represent any wavenumber unless § = 0; usually, for chiral media,
[kB| < 1. Furthermore, all the four field vectors follow the same governing differential equation [23],

V2U + 2B VxU + Y2 U = 0; U=E,H,D,B. (5)

which reduces to the vector Helmholtz equation, VU K2U - 0, when B = 0. Corresponding to (5), the
infinite medium dyadic Green's function, @(x, x'), is given as [23]

B(x,x) = B(x,x) + By(x, x), (6a)
B (x, x) = (&8ny2) [yy ¥ + 1,1 VV + V x ] gy :R), (6b)
By(x, x') = (8TY?) [, ¥ + 1,1 VV - V x 8] g1pR), (6¢)

with ¥ being the unit dyadic, Y= k[l-kB]’l, Yy = k[1+kB]'1, g(;R) = explixR]/R, and R = x-x'.

As a consequence of (6), the isotropic chiral medium must exhibit birefringence, vide the wavenumbers
Y1 and ¥,. Linearly polarized waves cannot exist in such a medium, and the EM wave consists, in general,
of a left-circularly polarized (LCP) part and a right-circularly polarized (RCP) part. If B is assumed to be
positive (right-handed medium), then the LCP component propagates with the slower phase velocity, Y
or else, the RCP component, with a phase velocity w/y,, is the slower one.

2. SOURCES OF LCP AND RCP FIELDS

On utilizing Maxwell's equations as well as the Green's dyadic, it can be shown that the fields radiated by
electric and magnetic current densities, J and K, are given by

e - ol 1 A Be gyl 72
X X, X X), a

(00 = ol 1+ Bty B, der, (7b)
X X X X )e (X .

in which the integrations hold over the current-carrying volumes. Next, after noting that
Vx8(x,x) =v; B (x,x); Vx®B,(x, x') = — 1 B(x, x), (8a,b)
it is possible to restate (7) in a form which clearly brings out the chiral flavor of the medium; viz.,
kiyPE® =1 ] 8 1 x 0) [Gopmie) K@) +
+p llex 8y, x) [Gopmie) + K], @a)
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(iop/k) (/)?HE) =74 [[]a3x B (x, x)[ (iopm)Jx) -Kx)] -
-7 [[Jare B, (x, x)[ou/k)Ix) + Kx)].  (8b)

Thus, if in a source volume, (iow/k)J(x) + K(x) = 0 then the radiated fields are purely LCP and E(x) =
(iowk)H(x). On the other hand, should (iowk)J(x) — K(x) = 0 then the radiated fields are purely RCP and
E(x) =- (iowk)H(x). Incidently, these are also precisely the conditions for the generation of the circularly
polarized waves in isotropic achiral media, as pointed out to by Rumsey [25].

The equations (8) can be even more lucidly stated if we use two auxiliary field vectors -- a LCP field
vector Ql and a RCP field vector Q2, where [14]

Ql = (1/2) [E + (jop/k)H]; Q2 = (1/2)[(iwe/K)E + H]. (9a,b)
In that case,

k2 Q) = 11 Jdx 8 (x, x)-[Gopmoe) - Keo, (10a)

k2 Qy0) = - oK) o Ja3x B (x, x)e[opi T + Keo)]. (10b)

As can be observed from (10), the radiation of Q is independent from that of Qz."I‘he coupling between the
LCP and the RCP fields takes place only at bimaterial boundaries [22] where conditions on the tangential
components of E and H must be satisfied, i.e., the boundary conditions are specified not on the Q's singly,
but on the combinations [Q 1- (i(op/k)Qz] and [Q; - (ime/k)Ql].

3. RADIAL AND TRANSVERSE FIELDS

Reverting to the use of E and H, it can be shown using the constitutive equations (2) as well as
Maxwell's equations that

/)2 VXE = iopH + k2BE + (ioup]J - K), (11a)
(k/y)? VxH = -iweE + k2BH + (ioepK + J). (11b)

The cross-product of both of these equations is taken with r = re, and the transverse components (subscripted
t) of the resulting equations collected. Then, since

(rxVxA), =11 gradg, (reA) - r{/Ar}A - A, (12a)
gradg, = € {0/06} + e, (1/sinB){0/0¢}, (12b)
in a spherical co-ordinate system, it follows that
(k)? 1! grady (reE) - (kiy)? {9/0r}GEy) - iop r (H - ioeBE) = rxGopp] - K), (13a)
k2l gradg (rH) - (k) {2/0r}(H) + iwe 1 x(E + iopBH) = rx(ioefK + J). (13b)

In order to eliminate the radial components in (13a,b), we go back to (11a,b) and take their dot-products
with r. Then, it turns out that

imer’E =reJ + Ve[rx(H + ineBE)], (14a)
iopreH =reK - Ve[rx(E - iouBH)]. (14b)
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Substitution of (14) in (13) finally leads to two differential equations for the transverse components of the
fields:

~ &M)? (iwer?)! gradg dive, [rx(H + iweBE)] - (kiy)? {0/3r}(E,) - iop r x(H - ioeE)
= rx(oupl - K) - (o) (oe) ! gradggle-J1, (152)

- (/)2 (iopr?) 1 gradg, dive, [r(E - iouBH)] - (/)2 {9/0r}aH,) + ive r x(E + ioppH)
= rx(ioePK + J) - (k)2 (iop)1 gradg [e,*K]. | (15b)

Separation of E and H from (15a,b) is well nigh impossible, and once again, the auxiliary fields Q; and
Q, serve us in good stead. It turns out that

2 grade(pdivmp [rxQq1 + {9/0r}(1 Q1) + 11 T xQq
= -(112) (11/%) [rxGopdik - K) + gradg, fes(lopl/k - K), (16a)
r2 gradeq,dive(p [rxQsy] - {0/0r}(1Qy¢) + Y T XQy
= (112) (R /iop)[rxGopd/k + K) +gradg, e *(oud/k +({(6)g),
in which equations the divergence operator is defined by
dive(p A = (1/5inB) [{0/00}(sind Ag) + {aA(p/a(p}]. a7n
4. EIGENFUNCTION EXPANSIONS OF Q; AND Q,

Equations (10) and (16) are of great import because they allow independent eigenfunction expansions of
Q and Q5. In order to do so3 we note the Helmholtz theorem on the sphere: Provided A is a field of vectors
on a sphere and is of class C”, then there exist functions F(x), S(x) and T(x) such that

A =Fe, + gradg S + e, X gradg, T, | (18)

pursuant to certain conditions on these scalars, which have been discussed at length by van Bladel [26]. As a
result [27], it is possible to express the divergenceless fields Q, and Q, in a source-free region as

Q= -(i(oe)'leVx(ulr) + Vx(vqr);

(19a,b)
Q= -(i(x)e)'leVx(qu) + Vx(vpr),
in which the scalars u; (x) = u;(t,8,¢), etc. must satisfy the scalar Helmholtz equations
V2 + ¥, 20y = 0; V2 + v, 219y = 0; (20a,b)
[V2 + )2y = 0; [V2 4+ v)2lv = 0; (20c,d)
along with the integrability conditions
o™ d0 sin® P*de uy; =0, etc. (21)

It can be easily verified that the scalar spherical harmonics, z, (Y1) an(cose) exp(img] and z(y,r)
an(cose) explimg], excluding n=m=0, satisfy the conditions (20) and (21). Consequently, if we choose
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v1 = z,(Y11) P ™ (cos) exp[img]; uy = -(ioe/yp)vy (22a,b)
vy = 2,,(Yo1) P (cos) exp[im@l; uy = (iwelyp)vy (22c¢,d)
then it is possible to expand Q; and Q, in terms of the vector spherical harmonics defined by Stratton[28] as
Q1 = Ligmn 21 omnMomn®1©) + Noma@i0l: (23a)
Q®) = Zomn 2omMomn(¥20) - Nomn@an)l- (23b)

In this discussion, z,, are the appropriate spherical Bessel functions, an are the associated Legendre
polynomials and 31 5mn ad 2y, are the expansion coefficients. The specific forms of u 1> ete. chosen in
(22) ensure that while

V2 +1,21Q; = 0; [V2+7,21Q; =0, (24a,b)
the circularly polarized characters of Q; and Q. are maintained vide |

VeQy =1Qy; VeQp =-1Q;. (25a,b)
5. RADIATION FROM SOME SIMPLE SOURCES

Finally, we consider here the radiation fields of some simple sources and show how their radiation
characteristics are different in chiral media from those in achiral ones, We begin by considering an electric
dipole source p located at the origin. In this case, J(x) = -iop8(x), and from (7a,b), it is easy to see that the
radiated fields are given by

'E() = (@2Wk) (762 [1,8(x, 0) + 1, B5(x, 0)]+p, (26a)

H(x) = (-i0) (¥K)? [y, 8 (x, 0) - v, B(x, 0)]-p, (26b)

0 being the null vector. Likewise, for a magnetic dipole m located at the origin, J(x) = Vx[mS(x)], and the
radiated fields turn out to be

E(x) = (iop/k) (vK)? [7;2 8 (x, 0) - 1,2 B5(x, 0)]m, (27a)
H(x) = (V02 [v)2 B1(x, 0) + 7,2 B(x, 0)]om. (27b)

The far zone radiated fields for both p and m can be computed easily by noting that when YI>>1,(8=1,
2), the Green's dyadics can be approximated by

B (x, x) = (ikyy/8ny%) By(x) g¥gir) expl-ivgex], (28)
where the dyadics
Bi(x) =e x[ie,x T +7]; Byx) =e. x[ie,x ¥ - 1. (29a,b)

The important difference between chiral and achiral media can be easily seen now by examining (26) and
(27). Without loss of generality, let the source dipole moments be parallel to the z axis. Then, if the dipole
moments were to be radiating in an achiral medium, at x = ze, there is no H-field due to p and there is no
E-field due to m. On the other hand, the phase differences between the LCP and RCP components guarantee
that in a chiral medium, both E- and H- fields exist on the z axis regardless of which dipole moment is
radiating.
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A similar conclusion can be drawn if the source is a constant-current loop of radius a. Therefore, J(x) =
(Io/a)e(p 8(r-2)8(0-1/2). Using (7a,b), the radiation field on the z axis can be worked out to yield

E(ze,) = e, (gma?)(opio[ (v0%h(r;iR,) - (r?h(rpR )], (30a)
H(ze,) = e, (ma)[ (10 %h(y:R ) + (1p)*h(¥p:R ) ), (30b)

in which h(GR) = [(R)" ! + (kR?) 11g(1cR) and R, = V[a® + z2]. It is easy to see that if B = 0, then the right
side of (30a) reduces identically o zero, as would be expected.
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