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Cartesian Solutions of Maxwell’s Equations for Linear,
Anisotropic Media — Extension of the Mrozowski Algorithm

The Mrozowski algorithm for finding cartesian solutions
of Maxwg}l s equations for anisotropic media (D = ean
B= =uyji H) is extended to even a more _general class of
hnear homogeneous amsotrop1c media (D = aan Jjngt

¥ H B= ,uo,uH+]170803 E) With the presented ex-
tension, the utility of the Mrozowski algorithm has been
greatly enhanced.

Cartesische Liosungen der Maxwellschen Gleichungen
fiir lineare anisotrope Medien
— Erweiterung des Mrozowski Algorithmus

Der Algorithmus von Mrozowski zur Bestimmung car-
tesischer Losungen der Maxwellschen Gleichungen fiir
anisotrope Medien (D =¢é E B= Lol nH ) wird auf eine
allgemeinere Klasse von hnearen homogenen amsotropen
Medien (D =gt E- — iy’ H B= ,uo,uH-l-];yans E)
erweitert. Durch diese Erweiterung wird die Anwendbar-
keit des Mrozowski Algorithmus wesentlich verbreitert.

1. Introduction

In a recent communication to AEU, Mrozowski
[1] has described a new computer-oriented approach
for finding out cartesian solutions of Maxwell’s
equations in a bianisotropic medium in which the
constitutive equations

(la)
(1b)

hold, with & and /i being, in general, full, complex
tensors of rank 3. Adhering as far as possible to

Mrozowski’s notation, it is assumed in [1] that the
electromagnetic field can be decomposed into the
form

E(x,y.2)=(2n) 2k, Ojo dg, (2a)

— o0

‘expl=jkofnz] [ dpexplipyIZ (v p.f),

H(x,y,2)=(21) ko Of g, 2b)

~ 00

rexp[=ikofuz] | dpexp[ipy)h(xp.fn).

These decompositions are then substituted into
Maxwell’s equations along with the constitutive
equations (1), and eventually, after eliminating e,
and %, , a matrix equation is arrived at relating the
field components e,, e,, /i, and &, to their x-deriva-
tives. The solution of this matrix equation, eq. (3) of
[1], can be attempted on a digital computer; as a
result solutions for Maxwell’s equations applicable
to the full tensor medium described by (1) can be
obtained using widely available software library
routines.

Here, 1 wish to point out that the Mrozowski
algorithm is even more widely applicable. Assuming
a general linear field structure [2], where the fields
D and B are dependent on both E and H, this algo-
rithm enables the analysis of a wide variety of
generally anisatropic media, including, but not con-
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fined to, gyroelectric [3] and gyromagnetic [4] media,

isotropic chiral media [5], and various classes of

crystals [6]—[8]. Such media are being increasingly
explored because of potential use in hybrid and
monolithic integrated circuits as well as in sensor
technology, and a good recent and relevant review is
contained in a paper by Krowne [9].

2. Analysis and Discussion

The constitutive equations for a general, linear,
homogeneous, anisotropic medium can be formally
expressed as [1], [9]

D=eEE—jns' uo? H, (3a)
(3b)

B =pofiH+jnoesS E.
Substitution of (3) in the Maxwell’s equations for
curl £ and curl A leads to

- =

curl E = ky[finH +§ EY,
curlnfl=k0[‘1’ nfl-i—'é’ E],

(4a)
(4b)

where #=—jno, and 5y and ky are the intrinsic.

impedance of and the wavenumber in free space,
respectively. By substituting the two decompositions
(2) in (4a, b), it is easy to show that

Exx Ext Fxx Frr— k €x
o P el &1t (r+ BT 1y el

Sxx Sxt— k Hxx Hox: Ui hx

(stx+k)T Sit s By 77h;r

where the 6x6 matrix P=diag(1,1,—1,1,1,—1);
the 1x2 row vectors k= (B, jp/ ko), €= (e, ¢€;)
and h,= (hy, h,), with the superscript “T" denoting
the transpose. The constitutive tensors are parti-
tioned as shown below,

Exx Ext Exx €xy Exz

o

g = = |&x &y &: (6)
T
&ix 1t Erx &1y &z

with e, being a scalar, &, and &, being 1x2 row
vectors, and &, 1s a 2 x 2 matrix.

Eq. (5) can be further simplified by eliminating
e, and y h, from it. In the manner of Mrozowski [1],
one obtains

{d/dx} (e, nh)"=RQ(er, nh)T ™)

which is exactly like eq. (3) of [1], and which is
solved like a matrix eigenvalue problem by his algo-
rithm. In (7), R is a 4x4 matrix whose right-to-left
diagonal elements are all unity, the remaining ele-
ments being identically zero. The 2x2 submatrix
elements of the 4 x 4 matrix Q are given by

Qll = KO Ixx {[ﬂxx 8t];c — Sxx (rtx+ k)T] Ext
- [rxx 8;1;6 — Exx (rtx+ k)T] (sxt_ k)} + KO &t s

Q12 =K, Gxx {[,uxx stl;c — Sxx (rtx + k)T] (rxt_ k) -
- [rxx 8;1; — &xx (rtx + k)T] .uxt} + KO Fres
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0= Ky gxx {[fx (515 + k)T — Sxx ﬂgc] Exr—
- [rxx (stx + k)T T Exx F;Ec] (sxt - k)} + KO St

Q22 =K, Gxx {[,uxx (Stx + k)T — Sxx ﬂgc] (rxt - k) -
- [rxx (Stx + k)T  Exx .utl:v] ﬂxt} + KO B s (8)

WIth Gyx (Sxx Frx — Exxfhxx) = 1, and the 2x2 matrix .
K, = diag (— kg, ko). It should be noted that by
setting the tensors ¥ and ¥ to zero, the definitions
(8) reduce to the definitions (4) of [1].

As a result of the foregoing discussion, the Mro-
zowski algorithm for finding the cartesian solutions
of Maxwell’s equation subject to the constitutive
equations (1) is also perfectly capable of handling
the even more general case [2] when the constitutive
equations (3) apply. As such, the procedure is valid
for exploring the dielectric Faraday effect {3], the
magnetic Faraday effect [4], natural optical activity
[5] and crystals [6]—[8], among several other pos-
sibilities. This generality of the Mrozowski algorithm
makes it very useful indeed.
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