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ABSTRACT

Optical activity is exhibited by media whose molecular configurations are handed or chiral. Since
geometry is the basis for chirality, it can be probed by transverse waves, but not by longitudinal waves.
Therefore, solid composite media can also be chiral because the acoustic fields in solid media consist, in
general, of both transverse and longitudinal components. To explore this conjecture, the acoustically active
medium is modeled by beaded helices embedded in a matrix material. The helix is comprised of tiny rigid
spheres strung along a helical strand which is indistinguishable from the matrix medium. The field scattered
by a beaded helix is computed by modeling the individual spheres as point dipoles, with multiple scattering

theory being used to account for the dipole-dipole interactions. The computed results justify the premise of
this communication.

1. INTRODUCTION

Many organic molecules occur as stereoisomers in enantiomorphic pairs, i.e., one isomer is the mirror
image of the other one, but the two of them are not congruent with each other. These mirror-conjugates
possess different physical properties even though their molecular formulae are identical [1]. The basis for the
difference in the physical properties of the mirror-conjugates lies in the handedness or the chirality possessed
by their rolecular configurations. Thus, it is well-known that when an electromagnetic disturbance travels
through a medium consisting of chiral molecules, it is forced to adapt to the handedness of the molecules. In
other words, linearly polarized planewaves cannot be made to propagate through such a medium; whereas left-
and right-circularly polarized planewaves, travelling with different phase velocities, are perfectly acceptable
solutions of the vector wave equation for this class of media [2].

Electromagnetic waves can recognize the handedness of a chiral object primarily due to their transverse
nature, i.e., the applicable vector infinite medium Green's fuaction recognizes the vector distance between the
field point and the source point. Longitudinal fields, such as acoustic waves in fluids, cannot do so because
the pertinent Green's function is purely scalar. However, acoustic fields in solids have both longitudinal and
transverse components [3]. There is every reason to believe, therefore, that solid media can be endowed with
"acoustic" activity a la optical activity [1,2]. Thus, an acoustically active medium may be constructed by
embedding macroscopic chiral objects, all of the same handedness, in a host medium; the resulting effective
medium should then exhibit chirality. By varying the concentrations and the sizes of the chiral inclusions, the
properties of the composite medium may be altered to suit desired characteristics. In view of the flourishing
research efforts being bestowed on novel polymers and composites, it is possible that acoustically active
media may turn out to be of considerable importance.

With this motivation, we have decided here to explore if the inclusion geometry can serve as a basis for
acoustical activity in composite solids. The chiral objects used here consist of tiny rigid spheres suspended on
a helical strand which is indistinguishable from the surrounding space [4], Whereas each bead is sufficiently
small to be modeled as the equivalent of a point electric dipole, the overall size of the finite helical
arrangement can be large enough to be in the high-frequency regime. From the computed results, it is deduced
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that the geometrical arrngement of inclusions in a matrix medium can be exploited to construct acoustically
active composite media.

2. RAYLEIGH SCATTERING BY A RIGID SPHERE

The primary component of the present investigation is the acoustic response of a tiny rigid sphere, it
being our contention that such a scatterer can be modeled as a point dipole, exactly as in the electromagnetic
case. Consider, therefore, a small rigid sphere of radius b embedded in a host medium of density p and Lame
constants A and p. On this sphere, there is a field incident whose displacement vector is ;. and as a result
of which a surface traction t__is induced [5]. This surface traction then re-radiates creating the scattered field
ug. given by

ug (r) =- H S d2r0 ®(r,r0) *t (ry), routside S ¢))]

as per Huyghens' principle [6]. In (1), the Green's dyadic can be resolved into longitudinal (p) and transverse
(s) components as [3,6]

G(rry) = Brry) + B (rr ), (22)
® (rro)=- (kp3/p(o2)[kp‘2VV]g(kpR)/4n, (b)
B (rry) = (kg Ipw?)¥ +k2VV]g(k Ry4r, (2¢)

in which ¥ is the identity dyadic, R = - r,and g(&) = expli&)/E. An exp[-iwt] harmonic time-dependence
will be implicit throughout this paper; kp2 = 0*p/[A+211] and k= (ozp/u.

In the far zone, ie. for k. r >> 1"and k_r >> 1, GBS(r,rO) is purely transverse and g(kR) can be
approximated by g(kr)exp(-ike r ] as per Kleinman and Senior [7], e, being the radial vector in the spherical
co-ordinate system. Furthermore, the sphere is tiny, i.e., k..b << 1 and kb << 1, which implies that g(kR)
can be adequately approximated by g(kr) [7]. Thus, it is possible to restate (1) in the form

ug(r) = B(r) « 1, (a)

where the dyadic B(r) is given by

B(r) - gy ee, - ()’ glkr) exexd, (3b)
the equivalent dipole moment being

I = (- V) G, ipwd) g a2y 1, ). (o)

It follows from (3) that the replacement of a small rigid sphere by an equivalent dipole moment is a
well-founded concept.

For a small sphere, the dipole moment IT can be easily derived by heuristic means without resorting to
(3c). If a longitudinal wave u;,c = €, explik,z] were to be incident on the rigid sphere, then in the Rayleigh
limit it has been shown by Knopoff [8] that the scattered field in the far zone will be

UG (1) = o B(r) s, =3k b [1+2 (kS/kp)z]'l. (4ab)

while the scattered displacement corresponding to an incident shear wave u,

= e,explikgz] in the same
circumstances will be [9]

C

u, () =a®(r)-e,. (4c)
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Without loss of generality, then it is possible to state that o, is the equivalent polarizability of a rigid sphere,
and

usc(r) = E(r) Il=q E(r) ° llinc (5)
in the far zone.

3. FIELD SCATTERED BY A BEADED HELIX

The helix on which the rigid spheres are located is given, in a cartesian co-ordinate system, by the radius
vector

r(8) = ale, cos{ + ey hsinC] +e, P({/2m), { € {-co, o}, (6)

where a is the radius and P is the pitch of the helix; the handedness parameter h = +1 if the helix curls up in
the +z direction according to the right-handed rule, and h = -1, if otherwise. The identical spheres are arranged
on this helical coil as follows: Let the helix be finite in extent, having 2N+1 complete rotations so that {
extends over the range {-(2N+1)r, 2N+1)n}, N being a positive integer or zero. On each of the 2N+1 rings
of this finite helix, there are 2M+1 beads arranged over equal-Af segments, M being an integer greater than
zero. Then, the position vector of the m™ bead on the helix is given as

I = aley cosC + ey hsinl ]+ e, P(C/2m), me {1,Q}, (7a)
where,
Cm =7(2m-Q-1)/(2M+1), Q= (2N+1)(2M+1). (7bc)

Each of the Q spheres in this arrangement has a radius b which is small enough that no two of them ever
touch; the condition 2(2M+1)b < min{a,P} shall definitely guarantee that.

Consider that a displacement field Uine is incident on this helical arrangement; it can be any arbitrary
field so long as its source is not located anywhere inside or on the minimum sphere circumscribing the helix.
But this is not the actual field U, which excites the mt sphere. It is easy to see that the field exciting the
m™ bead can be self-consistently written as [10]

Un = Ujpcrp) + 2:n,mém Urad,n(Fm) ®

in which u is the radiated (i.e., scattered) displacement due to the nth equivalent dipole (i.e., sphere)
rad,n . th
evaluated at the location of the m"™ sphere. Mathematically [6,7],

Ura, ) = @rp /i, HO(r, 1)« IT, = o (mpe?ic, ) 8(r, 1) - U, ©
Equations (8) and (9) can be combined to yield

Upy - o (mpo?ic ) By 18 ) - Ul = ug (), (10)
which can be solved for the exciting fields U, Vme {1,Q}.

Once the solution of (10) has been obtained, the total scattered field outside the circumscribing sphere

can be computed simply as [10]

uge(r) = o (drpe?ic, ) T (e, ry U (11)
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which, for kpr —> eo and k1 — oo, can be simplified to

usc(r) = g(l(pr) Sr(r) er + g(ksr) [Se(r) ee + S(P(r) e(p]v (12)

in which the form functions are given as

Sy(r) = o By expl-ik e or, ] eoUp (13a)
So(r) = o (kyfk )> | expl-ikgeor, 1 eg+Up, (13b)
Sgr) = o (gl By expleikge,orl ey (13c)

It is again emphasized here that, in deriving (10) and (12), there are no restrictions placed either on the
radius a or on the pitch P of the helix; the only limitation here is that the radius b of each of the beads be
sufficiently small so that its scattering response can be adequately described via (5).

4. NUMERICAL RESULTS AND DISCUSSION

Equations (10) and (12) were programmed on a DEC VAX 11/730 minicomputer and the exciting fields
U,,, as well as the form functions S, etc. were computed for computed longitudinal (ujp,c = €,explik,z]) and
transverse (u;, . = exexp[iksz]) plane waves moving in the +z direction. This particular configuration for the
incident fields was chosen to maximize the effect of chirality on the scattered fields.

Multiple scattering between the spheres would ensure that Upy #uj.(r). It is to be expected that the
exciting fields should reflect the chirality of the helical arrangement of the rigid spheres. This, indeed turned
out to be the case. For the two cases of the incident fields mentioned, it was observed that the y-directed
component of U reversed its sign if the handedness parameter h changed its sign too. This virtually
guarantees the fact that the acoustic waves in an elastic solid can recognize the chirality of an inclusion.

Further proof of this assertion is afforded by Figs. 1 and 2, in which the magnitudes and the phases of
the form functions S, Sg and S are plotted against ¢ in the equatorial plane 8 = 7/2 when a shear wave u;
= exexp[iksz] is incident on a 9-sphere arrangement; N=M =1, k.a= 1.0, P/a = 3.0, k/k, =3.0,and k b =
0.033. For Fig. 1, the helix is right-handed (h = +1), while in Fig. 2 h = -1. There is no straightforward
procedure to make the plots of Fig. 1 congruent with those of Fig. 2, although they look very similar;
indeed, all of the magnitude plots of Fig. 1 are congruent with the respective mirror images of the magnitude
plots of Fig. 2, and two of the three phase plots also exhibit similar congruences.

Reinforcement of the fact that geometry can be the basis of acoustical activity comes also from Fig. 3,
in which the computations of Figs. 1 and 2 are combined but for the incident longitudinal wave, Ujpe =
ezexp[ikpz]. Although the incident wave in this case is longitudinal, acoustic activity is manifested because
each sphere radiates both longitudinal and transverse waves as per (5).

Finally, it is common knowledge that the scattered field can be expanded in terms of the vector
mutipoles as

Use(r) = Zgmn [Asmn Lcmn(3)(kpr) *+Bsmn Mcmn(3)(ksr) +Comn Nomn(3)(ksr)]’ (14)

in which L, M and N are the vector multipoles or spherical wave functions [3] and A, B and C are the
multipole coefficients of expansions. Using the asymptotic expansions of the vector wave functions in the far
zone along with the form functions, the multipole coefficients can be computed (see Appendix). For the
computed results of Figs. 1-3, the ten lowest order multipole coefficients are tabulated in Table 1. Although
the magnitudes of the multipole coefficients are the same for h = + 1, it is clear that their phases cannot be
made to coincide for right- and left- handed helices.

In conclusion, it has been shown here that the geometrical arrangement of inclusions in a matrix
material can be exploited to yield acoustically active composite media. It is not necessary for the inclusions to
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Figure 1 Computed values of the magnitudes and the phases of the form functions S(r/2,@) [+ =],
Se(n/2,<p) [~e—e—e—] and S(p(n:IZ,(p) {— —~~] for aright-handed helical arrangement (h = +1) of
small rigid spheres, on which a shear wave Uinc = exexplikgz] is incident. For the matrix
material, k/k ) = 3.0. The helical arrangement is comprised of 9 spheres of radjus b arranged on a
3-ring helix (M=N=1); k_b = 0.033 so that the polarizability o = 0.5263x10"2. The normalized
helix radius kpa = 1.0, and the normalized pitch ka =3.0.
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Figure 2 Same as Fig. 1, except h = -1.

Journal of Wave-Material Interaction, Vol. 1, No. 3, August 1986
320



Geometry can be the Basis for Acoustic Activity

Varadan, Lakhtakia and Varadan

‘0°¢ = m&_ yond pazijeursou ay) pue ‘g'] = uau_ SNIPeI X1[9Y PIZI[euLIou
PUL "7.01X€9Z5°0 = 0 Aunqezireiod oy ey 05 £0°0 = 9 H(I=N=}) X1[oy 3un-¢ € uo pairerre
q snIper Jo sarayds ¢ Jo pasudwiod sy JuswadueLre [eoNaY YL 'O = nu—\mx ‘[eLINEW XINRW 3Y) JOJ

*JUIPIIUY ST TﬁE&Bno = UTn orem [eurpni8uo] & Yyorym uo .muuus%s PI311 [Jews JO sjuswaSueLre
[edl[3y papuey (1-=y) -a] pue (1+=y) -W8u 10§ [- -~ -] (H'z/W)?S pue [—e—e—a—] (d'g/1)0g

“[o s » o] (bz/2)'S SUONOUN] w10y 3y3 Jo saseyd ayy pue sopnjjuSew ayr Jo sanjea payndwo) ¢ aIndrg

ANVId IVI¥OLVADA FHL NI ¢

00% 2 00¢ 2 00¢ 2001 o0 o00% -00€ 0002 00T o0
_P- 2 -- “»- 2 3 " P O ) .\“.. 2 32 1 _pL[. i1 “ 2 -.- 3 “ 2.3 2 “ [} -.— - OOON.I
A0 poBk SO T N
I S B (N o IR AT
I L NP B R AT e N R R
_"_,_.)_ P i N N Pl
AR AN . by sy b “_ b~
dH AN YL A R R
—m ...+.. f/.m \~ _ 1 m I ! . i1 m .u " I — _ . -A\.\...m m/ J..l o0
HER VAR N SN IEE - faHl:
gL AT o pidba i W e
i e s AT RS
T.I,w Treseegtted v ) Ty f RS £ ik M ¥ L 002
I-=q T+=Y
“n.-".-n“.-.“-n- "u-.-“.-.“.-.-“-.-oo._..OOOOO-O
) I-=4 =4 & F 10000°0
c.o- ;.-.uu.oo'o .n-.u.-. ‘a-v- vo--tvoo.:- .-‘.cnnaucnuocaoo-o' ) -ou.- -o-o-c .-o-- T HOOO : o
4 & S Y r A .
~ N_s / ~_ N s 100°0
10°0
r. 1 . I
-/. .f- cf -/ .
e ~~d /'\..I./ -\..l./ 7/ N \./., \-/:\.\ e \. o
o L . N our’ S

T

Journal of Wave-Material Interaction, Vol. 1, No. 3, August 1986

321



Varadan, Lakhtakia and Varadan Geometry can be the Basis for Acoustic Activity

be rigid spheres; they can have different constitution and shape. Further work in this area is being carried on
by us and will be reported in the near future.

TABLE I

Computed values of the multipole coefficients for right- and left-handed helical arrangements of small rigid
spheres. For the matrix material, ks/kp = 3.0. The helical arrangement is comprised of 9 spheres of radius b
arranged on a 3-ring helix (M = N = 1); k_b = 0.033 so that the polarizability o = 0.5263x1072, The

normalized helix radius kpa = 1.0, and the normalized pitch ka =3.0.

Uinc = €z explikpz] Ujnc = ex explikgsz]
multipole magnitude phase phase magnitude phase phase
coefficients th=+1) (h=-1) (h=+1) (h=-1)
Acpo 1.1448 -0.097° -0.097° 0.2018 -81.978° -81.978°
Ae01 3.5777 89.809° 89.809° 0.3722 34.503° 34.503°
Aell 0.3713 17.896° 17.896° 0.0957 ~91.297° ~91.297°
Ao11 0.3103 -90.579° 89.421° 0.0437 -171.249° 8.751°
Beo1 0.0067 ~58.447° 121.553° 0.0060 -51.338° 128.663°
Be11 0.2644 158.683° -13.169° 0.0035 137.088° —42912°
Bo11 0.3405 ~90.054° -90.054° 03453 -178.046°  —178.046°
Ce01 0.1423  -113.879° 113.879° 0.1612  -178.346° 178.346°
Ce11 0.0917 176.209°  —176.209° 0.4570 171.939¢  -171.939°
Co11 0.1283 -90.166° -89.834° 0.0035 -75.837° -104.162°

APPENDIX

The ten lowest order multipole coefficients of the field scattered by the helix can be computed as follows:

Agop = (1/4m) I d6 5ind o/*" dep [S(8,)],

Aoy = (it4m) of" 46 sind ofl ™ do [S(6,¢) cos],

Agqy = (ir2m) o™ d6 sin@ (/2™ de [S,(6,¢) sind cosel,

Ao11 = Bir2m) ofF 6 sind (/2™ do [S,(6,¢) sind sing],

Begy = (-3/4m) oJ™ d8 sing o/*" de [S(8,9) sin6],

B,11 = (3/8m) (™ d6 sin@ 012“ dg [Sg(8,9) sing + S(8,9) cosé cos],
Bo11 = (3/8m) oJ" d6 sind o™ dep [-S(8,9) cose + S(6,0) cosd sing),
Cep1 = (-31/4m) ofn d6 sin6 sz ™ do [Sg(6,9) sind),

Cep1 = (-31/87) o™ d6 sind (2™ dg [So(B,¢) cosO cosp + So(0,0) sing),
Co11 = (-31/8m) /™ d6 sind [ [Sg(8,) cos sin ~ S(6,6) cosgl.
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