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ABSTRACT

The SH- wave reflection and the transmission characteristics of a two-dimensional, parallel,
periodic array of transversely isotropic, piezoelectric, circular cylinders immersed in a material medium
are examined. Use is made of the Floquet theorem to break up the scattering geometry into an infinite
number of unit cells as well as to devise a plane wave spectral representation of both the elastic and
the electromagnetic fields. The scattering characteristics of each cylinder are obtained by a separation of
variables approach. Fourier-Bessel expansions are then used in a mode-matching technique to solve for
the scattering characteristics. A quasi-static approximation is also derived and is used to compute the
diffracted power coefficients. It is observed that the voltage developed across a diameter of the cylinder
in a unit cell accurately reflects the Rayleigh-Wood anomalies.

INTRODUCTION

Ever since the discovery of the piezoelectric effect by Pierre and Jacques Curie [1,2], materials
possessing the relevant properties have been used in the manufacture of diverse transducers, resonators,
filters and other such-like applications. Piezoelectricity is the linear, reversible coupling between
electromagnetic and mechanical (elastic) energies due to the displacement of charges. Charge applied
over the surfaces of such a material produces internal stress and strain; conversely, the application of
mechanical pressure creates a change in the surface charge density, thereby launching an
electromagnetic field.

Materials that are piezoelectric are either crystals with anisotropic properties, or, they are
ceramics with ferroelectric properties which can be endowed with a permanent charge polarization
through dielectric hysteresis. Single crystals are generally suited for very high frequencies and, in
quartz, elastic wave propagation has been observed even at 125 GHz. However, the piezoelectric
coupling in quartz is quite weak. Synthetic materials, principally ferroelectric ceramics like uniaxial
barium titanate (BaTiO3) and lead zirconate titanate (PZT), on the other hand, have stronger
piezoelectric coupling and possess polycrystalline grain structures which propagate elastic waves with
moderate attenuation at frequencies upto the low-megahertz range.

Although the use of piezoelectric materials is quite widespread, the scattering and the absorption
properties of material volumes made of such media have not been extensively investigated. Reflection
and transmission characteristics of planar, piezoelectric half-spaces was examined by Kyame [3,4].
Scattering of elastic and electromagnetic (EM) waves by some piezoelectric, cylindrical inclusions has
been explored by Moon [Ref. 5, and others loc. cit.]. But because of the complicated anisotropic
nature of such materials, whose taxonomy runs over no less than 11 systems [2], a general theory for
scattering by piezoelectric material volumes has been lacking.
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The aim of the present work, however, is not to present such a general theory (a formidable
task, if not actually impossible). Instead, a specific problem, not treated in the extant literature, is
going to be investigated here. The scattering geometry consists of a periodic array of identical,
piezoelectric, circular cylinders of infinite lengths which are immersed in a non-piezoelectric medium.
The piezoelectric materials considered here have hexagonal symmetry and are transversely isotropic,
and, furthermore, have the same form of constitutive properties as uniaxial BaTiO5. For the properties
of such a class of materials, the reader is referred to the works of Auld {2] and Moon [5]. Although
the incident wave can either be an SH-type elastic wave or a TM-polarized electromagnetic wave,
numerical results will be given only for the former incidence case. Use is made of the Fourier-Bessel
expansions and the plane wave spectral (PWS) representation of the relevant fields and a
mode-matching theory [6] is utilized to compute the plane wave reflection and the transmission
coefficients of such an array.

PRELIMINARIES

Consider the scattering geometry shown in Fig. 1 where the homogeneous medium 1 extends
over all space, except for the parallel, periodic array of circular cylinders made of material 2. Medium 1
has been chosen to be isotropic and homogeneous; it can support both electromagnetic and elastic
waves independent of each other, and is devoid of any piezoelectric coupling. On the other hand, the
cylinders possess piezoelectric properties and are transversely isotropic in the xy plane. Piezoelectric
materials of this kind are quite common, e.g., uniaxial BaTiO,, cadmium sulfide (CdS) and zinc oxide
(ZnO) [5]. Such materials, being piezoelectric, are necessarily anisotropic, but that anisotropy
manifests itself in wave propagation in the xz (or, the yz) plane. Since the present problem is
two-dimensional and wave propagation occurs in the xy plane, transverse isotropy aids in the
formulation of a comparatively simpler solution. Furthermore, the following treatment applies strictly
to materials like uniaxial BaTiO,: for other classes of piezoelectric media with transverse isotropy and
hexagonal symmetry, modifications must be made in the coefficients C;), D, E.,., etc. which
appear later on.

The permeability and the permittivity of medium 1 are denoted by €, and 1, respectively, while
its density and rigidity are denoted by p; and c44,, respectively. Electromagnetic waves polarized
TM-to-z alone are coupled to the SH-type elastic waves in this problem; hence, the other material
properties of medium 1 are not of consequence here. The corresponding properties of the piezoelectric
medium 2 are denoted by e (&, is a tensor and v is its xx component measured at constant
traction), |15, Py and c44y, whereas e, 5, is its needed piezoelectric coupling constant [2,5].

It turns out, therefore, that in medium 1, the EM plane waves can be of the form

H « exp [ikHl-r] z; VxH = - ineE, (la)
with the EM wavenumber

whereas the elastic displacement vector u of the plane SH-waves is of the form

u o< exp [ikSHl-r] z, (2a)
with the SH wavenumber
kspy = © [py/cqqq) 2 @)
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When a SH wave or a TM-polarized EM wave impinges on the cylinders, the piezoelectricity of
medium 2 gives rise to scattered fields of both kinds. Thus, whereas the elastic and the EM waves are
decoupled in medium 1, the two fields induced inside each cylinder are coupled together by the
coupling factor e 5. In medium 2, a pure TM-polarized EM field possessing a wavenumber

kg = @ [epony] 12 (3a)

can exist, along with a piezoelectrically stiffened SH wave having a wavenumber

kspa = © Py/{caay + ysp e 1112 (3b)

It may be noted that in (3b) the rigidity is not c44,, it being augmented by the addition of
(e152)“/eTo. Insofar as the actual representation of the various field components in the cylinders are
concerned, they will not be given here and the interested reader is referred to Moon [5].

Finally, it should be noted here that L is the period between consecutive cylinders along the x
axis and a is their radius of cross-section. Because of the periodicity of the problem, the celebrated
Floquet theorem [7] can be used to break down the scattering geometry into an infinite number of unit
cells, also illustrated in Fig. 1. Then, the scattering by any one of these unit cells can be considered
separately with periodic boundary conditions being imposed on each cell. To accomplish this purpose,
one needs, however, the scattering response of a sole piezoelectric cylinder embedded in medium 1.

SCATTERING OF WAVES BY A PIEZOELECTRIC CYLINDER

As is customary in two-dimensional problems involving cylindrical geometries, all relevant
fields are expanded in terms of cylindrical Bessel functions J () or cylindrical Hankel functions of the
first kind H,(*), concurrent with a harmonic time dependence exp[-iot]. Thus, if a SH wave

00=2 AT (kgpyD) £ (xeiy)™, me {0000} @

is incident on a piezoelectric cylinder of radius a, then the total field existing outside the cylinder can
be expressed in the form [5]:

uzunit = Zm Ap{ Jm(kSH 0+ Cm Hm(kSle) }rm (x+iy)m, me {-oo,00}, r > 2 (5a)

and
H0t e 30 A (D Hy (kgyn) o™ (xeiy)™, me {rooce), 122 (5b)
where,
[= (x2 + y2)1/2, 6)
AmCm = {(mey 5%y} Iy (ksp1®) Iy(kspo®) Hn(kprn) Im(ker®)

- [Hpy(kgg12) I (kpp22) - M2 Hpy (kpy12) Ipkepgp2)] ©

® UmsH12) Im'ksp22) - Y12 I (ksH12) Im(kso2)] ©

* Dkpppkspa®l*lcaqn + €1527/e), (7a)
AP = [2mey5p/mlp(ksp2a) mkpy22)s (7b)
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Am = {(meys)¥era} Hyylkspry ) Tpy(kspro®) Hyykp12) I (kgg2)
- [Hpy(kp112) Iy (kg2) - N2 Hpy'(kpy13) Tpy(kpgp2)] ©
* [Hpy(ksH13) I (Ksp2a) - Y12 Hpy'(kgp12) I (kspo2)] ©

* Dkpgoksprall ® [c4qp + 152760l (7c)
Ny = (/' epprep'?, d)

_ 12, 2 172 .
Y12 = (P1/P) "7 (cqq2/caq1 + €152 /C4418T2) % (7e)

and the primes denote differentiation with respect to the argument,
If, on the other hand, a TM-polarized EM wave

H =-i02 . B I (ggum 1™ (x+y)™, me {-00,00} ®
is incident on the cylinder, then the total field existing outside it can be set down as [5]:

H 0 = o 2 B (I (g + By H (kg0 0™ (x4iy)™, me {-o0,00}, T 2 ,98)

w0t 3 B P Hy(egeyn) 3 1™ (xady)™, me {ooe}, 12 3, 9b)

where

-AmEpm = {(mey5)¥e1a} Hyy(kpr12) I (s Tl 12) In(kpg09)
- U mCk12) I Geg22) - M2 I (kg 1) I py(kpg2)] ©
* [Hp(kgp12) Iy (ksp22) - V12 Hp'(ks12) Tpy(ksppa)]
* Doksn?®] * cagn + g 57%emo) (10a)

A Fn = - [2me 5o/me ] I (Kgpoal  (kpyod). (10b)

Therefore, the complete general expression of the total fields existing outside the piezoelectric
cylinder must be of the form:

uzunit = Zm rm (X+i)’)m[ BmFm HmksH1D + Am{J m(ksgl-lel? + Crfl;lm(:Sle )}]’(1 1
m’” ’ 2 ed

H21 = 0 2 7 i) AP B + By U049 + Embi ),
m’” ’ Z

with A and B, representing the yet unknown coefficients of the incident SH and TM waves. As

would be seen in the next section, it would be advantageous to recast these two expressions into an
equivalent form:
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u bt Z,‘ios(rpw) [A][m{J (kgpy1 D) + CrpHi(ksy D+ Agp P He (kgpyy) ] +
+1 L in(mO) L A3 U (kg n) + CopHin kgpy D H AgmF Hyplespr o) 1,
r>a, (13)
and

(WaH,"™ =i X sin(mg) [Agm (TP + BBk H A Dy B (kgggr) ] +

+ X cos(me) [Agn Il ) + B0+ Ag Do Ho (kg0 . ”
r2a,

with ¢ = tan'l(y/x), and the expansion coefficients Aim (G = 1,...,4) are as yet unknown. For
summations in (13) and (14) over functions involving sin(m®), the index m extends over {1,e0}; while
for those involving cos(me), the index m assumes values in the range {0,0},

Pertinent to the present problem, however, the foregoing expressions hold rigorously
only if L > 8a/3, but cannot be deemed to be valid rigorously if L < 8a/3. In the latter case, this
method must be held a priori to be an approximate one. Should, however, the cylinders intersect, i.e.,
if L < 2a, then together they form an infinitely long material plate with periodically rough boundaries,
and techniques like the ones described in Refs. 8 and 9 may be used to solve for the reflection and
transmission problem.

THE COMPLETE SOLUTION

In the region |y| > a, the appropriate representation of both the elastic and the EM fields is in
terms of the Bloch wave functions with periodicity L. Consequently, for y > a, -0 < x < o,

Uy = 2 {Syn, expliB,SHyl+ Ryp, expliB, SH yltexp lioyx L)

H,, =-io Zn {Sy, + exp[-iBnHy] +Rop ., exp[iBnH yl}exp [ioyx] (16)
where,

oy =0 + n(2n/L), n=0, +1, 12, ..., (173)

Boot = + { gy 2 - oy )12, (7b)

BH =+ (kg 2-a D)2, (17c)

and oy, is a parameter decided by the PWS expansion of the incident field [7], and will be given later.
Likewise, fory < - a, -0 < x < oo, the fields can be set down as

2. = Zn {Sin- eXP[-iBnSH Y1+Ry,. eXP[iBnSH yl}exp [iox] (18)

H, =-io 2 {Sy, expl-iByHy] + Ry, expliBH yl}exp fioxl. (19)

In these field expressions, the planewave ensembles {S1ped {Sop, b {Ry, } and {Ryp }
represent plane waves moving towards the cylinder array, and could be propagating or evanescent. The
remaining ensembles, {S1p.b {81 {Ryy.} and {Ry. } represent plane waves moving away from
the array. Since only the reflection and transmission of a SH wave is going to be considered here, it
follows that

S2n+ =Rip.=Rop =0, V n; S5, =8y, (202)
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where snm is the Kronecker delta; the remaining coefficients in (15), (16), (18) and (19) need to be
detgrmined. In addition, since the incident SH wave will be taken to be a plane wave making an angle
9p°H with the y axis,
ag = kgpy sin(9y5H), (20b)
It now remains to link the various coefficients Ain (G = 1,..,4) with the plane wave
coefficients of this section in order to obtain the scattering characteristics of the piezoelectric cylinder

array. It would be useful, however, to exploit the symmetries of the elastic and the EM fields about
the y axis. Thus, let all of the fields to be decomposed as follows:

Sx.y) = (1/2) [G(xy) + o (xy)), (21a)
where

Le(xy) = [E(xy) + §ix,-y)), (21b)
and

Co®:y) = [E(x.y) = Ex,-y)]; 2lo)

and this decomposition is forced upon the expansions (13) - (16), (18) and (19).

On enforcing the continuity of the even magnetic and the odd displacement fields, as well as
of their y-derivatives, across y = a, |x| < L/2 and eliminating the coefficients A3 and Ay leads to
the matrix equation [10,11]:

Up | Ug S+ + Ry 524 -Rp.
] B - | = : (223)
Us | Uy S1-+Ryy R2+ -5z
where
H|n.H )1 Hjp H
UI}E{Z Ny rz MI%MZ
" \nHINHE vHIME |
Usl U, N;H I, M,HIMm,
SH| p SH\-1 SH{ \..SH
M7 Mz Ni™F N2
"o\l ) \EEiTsE ) @29)

and the various matrices of (22b) are given in the Appendix.

Similarly, on enforcing the continuity of the odd magnetic and the even displacement fields,
as well as of their y-derivatives, across y = a, |x| < L/2 and eliminating the coefficients Aim and
Ajpleads to the matrix equation [10,11]:

S T e — = | —————], (23a)

Vi ]l \P) Sp4 + Ry, S1+-Ry.
A/ Sp. + Ry, Ry

\£]
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where
ViV, N.SH stH -1 MSH Im SH
"""" - \y.SH|[wn SH S sHsH/
V3 V4 N3 N4 M M
H H\-1 H H
Ms™ Mg N7 | Ny
" \SEH “HR) @3b)
M, | Mg N, Ny

and the various matrices of (23b) are also given in the Appendix.
Rearrangement of (22a) and (23a) finally gives a system T-matrix for the periodic array

[Sl )R1+ ’ Sz !R2+] [T] [Sl+ s Rl_ Sl+ 3 Rl ] Tr (243)

where Tr denotes transpose, and the matrix

- 1
U, | u, | o ! 0]
u, | ! '
m -- et :
R 1 v | A
[~ n
Up b U 4
l
u; | U3 |0 ! 0
. . ‘ | , (24b)
1o by
0 1o V3 v

with I being the identity matrix.

Of necessity, all of the submatrices involved in (22) - (24) are truncated to be of size (2N+1) x
(2N+1). Recalling (20a), the principle of conservation of energy can used to determine the truncation
parameter N. The requirement that the final solution preserve the unitarity relation

2, Re(BySH} 11812 + Ry, 211 B

+ 2 (/e Y2 (wPime 441 BoSH) RetBHrkyy ) (IS0 12 + Rog 1 =1 (25)
within an adequate error tolerance (+0.5%) determines its convergence. Additionally, the various
coefficients S (p = 1,2) should also converge within an acceptable error bound, say not

exceeding 1 0%9, and It)hns requirement can also used to check the accuracy and the adequacy of the
computed solution.
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THE QUASI-STATIC APPROXIMATION

The solution procedure outlined above is indeed complete; however, because of the wide
disparity between the wavenumbers kgpyq and kg11» what are high-frequency elastic waves are found to
be coupled with very low-frequency EM waves. Since the normalised distance kL << kgp11Ls and
because the energy conversion mechanism is not a very strong one (i.e., D, and F,, are very small
compared with the other coefficients Cmn and E ), it is possible to use a quasi-static approximation
quite fruitfully,

In view of the incidence conditions (20a), the interaction of electromagnetic and elastic waves
can be initially ignored. Thus,

2y [ 21\ [S14 (22 R\ /5
S S - 1 2} = (26)
3 | 23/ \R,. 74 |24 \Ry,
can be derived ﬁom (22) and (23), where the submatrices
Zl - _M3SH . [MISH]-I . NZSH + N4SH (27b)
Z; = M;SH. vSHy 1. SH _y SH @70
and
A2m = 0, A4m = 0, V m ) (28)

Once the SH coefficients S - and R, have been determined from (26), the coefficients A
In- In+ 1m
and Aqp, can be found from the matrix relations:

A =SH LN SHogs LR,y M ST N SH L sy 4Ry, (292)

(A3} =BT N SHugs) Ry 3o MgSHLL N SH, Ry, -S..}. (29b)

. Substitution of (28) and (29) in (13) and (14) gives the elastic and the electromagnetic fields,

u, "™ and H, "™, respectively, in the unit cell outside the piezoelectric cylinder. Insofar as the fields
generated inside the cylinder in each unit cell are concerned, they can be computed from the relations

(51

uzint’ unit _ ZmAl mCm Jm(Kspyor) cos m +i 2 A3mGm ImKgpoD) sin me, (30

Hzint, unit _ -im(z AgmIm Im(kgpor) cos me +i 2 A1mIm Imgon) sin mcp), €)Y}

where
Ame = (-2ic4 41/®) [(szlel)(kHla) Hm'(kHla)J m(kHZa) - (kHza) Hm(kHla)J m'(kl_gzza;)],
(
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Amlm = (2me 526441/ M mKspp2 (kg 12). @3

Furthermore, the voltage difference V{, between two points {a,¢;} and {a,¢,+r} ina unit cell
can be computed in the following manner:

Vip=-ol® dr[E00iq ) + B IO g )] (4)
where,

e, bU0E < [(1/r) 3/9g {iH,®H 00} - e, 5 AAr{u,W0Y); (35)
whence,

V12 = (-ep)) Zm=0,2,4,... Alm °°S‘“‘P1[i1m{1 - @lirpa) Ly =1,..,m/2

[ @191 Cgrpa)] }- €570 m { Ilespro®) - Jm(o)}]' G6)

NUMERICAL RESULTS AND DISCUSSION

The quasi-static approximation of the previous section was implemented on a DEC VAX
11/730 minicomputer for piezoelectric cylinders of radii a = 0.2cm immersed in a homogeneous
medium whose constitutive parameters are €; = 7.0e, i = o, P = 1100 kg m” and cgqy = 70X
107 N m™2, The parameters for the cylinders themselves were taken to be €, = 301.0e,, Wy = K, P
= 6600 kg m™> and Caap = 85X 107 N m™2, with the piezoelectric coupling constant for medium? to
be €152 = 11.6 C N™*. It has been earlier [12] that in a composite medium consisting of a random
array of such cylinders immersed in the selected medium 1 gives rise to increased attenuation of SH
waves, in general. The end-result of these computations are the time-averaged Poynting vectors of the
SH waves reflected (R;) and transmitted (T,) in medium 1 when a plane SH wave strikes the
cylindrical array making an angle 1‘}OSH with the y axis. The power diffraction coefficients are given
as

R, = Ryp, 12 Re(B,SH}/B,SH €0)
and
T, = 1S 1512 Re{B, S SH, (39)

and are obviously non-zero so long as |o,/kgpy1l < 1.0. Additionally, calculations of the voltage V{4
of (36) were also made with P = /2.

Plotted in Fig. 2 is R, for the case when 1‘)OSH = 0° and L = 0.6cm. This calculation was
successfully performed upto a frequency of 42kHz, after which frequency convergence did not take
place. This is due to the fact that the integrals of the submatrices involved (given in the Appendix)
contain highly oscillatory integrands, and their computation, therefore, is prone to error. Although an
efficient code [13] for computing the Bessel and Hankel functions was used here, still no confidence
could be placed in the computed results beyond 42kHz frequency. In any case, Ty = 1.0 - Ry, for the
presented range of calculations, and no higher order transmitted or reflected modes carried any energy,
ie, R, = T, = 0 Vn 21. Also shown in Fig. 2 is the computed voltage V;, for @1 = /2.

In Fig. 3 the calculations were repeated but with the periodicity L = 0.8cm for frequencies upto
49kHz. The plots of R(y and Ty show anomalous behaviour at about 31.5kHz. Such an anomaly is
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called a Rayleigh-Wood anomaly [14], and comes here since the +1th modes have been excited here,
and, from this frequency onwards, propagate non-zero energies. However, R 1 and T ; have not
been plotted here for purposes of clarity. It is curious that, in spite of the use of thé quasi-static
approximation, the voltage V{5 also records the Rayleigh-Wood anomaly as well as do Rg and Tj,.

A similar comment regarding the ability of the computed voltage Vip to rseIf:lIect the
Rayleigh-Wood anomalies also holds in Figs. 4 - 6. In all of these three figures, 9" =30°,
but L = 0.6cm (Fig.4), 0.8cm (Fig.5) and 1.0cm (Fig.6). Again, Via reflects all of the
Rayleigh-Wood anomalies which appear in the R,- and the T - profiles.

A couple of general comments regarding the presented calculations are now in order. Firstly, it
was found that by ignoring the piezoelectric coupling €157 the total reflected power X R, was
generally decremented by a small quantity, not exceeding 0.5% of the total incident power. As a
compensation, the total transmitted power ZnTn would be incremented by the same amount when
€149 Was set equal to zero. Thus, at least for the present calculations and the frequencies considered, it
can be safely stated that the piezoelectric properties of the cylinders did not greatly affect their elastic
scattering characteristics.

Secondly, and perhaps more importantly, all of the V1, - profiles shown here contain an
additional anomaly at frequencies around 40kHz. Although at first glance this looks surprising, this
anomaly, whose location depends only on the cylinder shape, size and constitutive parameters, is
similar to the impedance-frequency characteristic of the quartz-crystal oscillators [15). Presumably,
therefore, a transmission line model [5] of the piezoelectric cylinder will be able to predict this
behavior. It is interesting, however, to observe this characteristic behavior of crystal oscillators in a
scattering problem.

Lastly, the very high values of V1 need some clarification. From a computational standpoint,
such high values result from the presence of the Hankel function Hm(kHla) in the formula (33) for
I, Since, kyg 2 is a very small quantity at these frequencies, the Hankel function becomes extremely
large, thereby making I, also very large. Consequently, the EM field excited inside each cylinder is
very high, although it does not radiate outwards enough to merit any effect on the satisfaction of the
principle of conservation of energy. Therefore, V5 is also very large. However, it is to be noted that
it is an open-circuit voltage. Presumably, when a pair of leads is put across the cylinder in order to tap
this high voltage, it will immediately drop to very low values and will need amplification in order to
be measured.
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APPENDIX
The matrix elements of (22b) and (23b) are as follows:
NP im =8 mexpl-iBPal; p=SHH (A1)
{NoPYom = Sy expliB,P=al; p=SH,H (A2)
N3Py = -iB,P {N{P} 5 p=SHH (A3)
{NgPhom = iBP (NP} ; p=SH,H (A%)
M, SHy - [ ax expl-ionx] {cos m@} Uy (kspyn) + CorHiy(ksprd)] |ya (AS)
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Figure 5. Reflection coefficients Rp:R_ g and R 5 and the voltage V1, computed between points
{a,n/2} and lfla,37|:/2} when a plane SH wave hits the cylinder array (L = 0.8cm, a = 0.2cm) at an
angle of 9,5H — 30°,
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