Home | Research Interests (Being under modification ...) | Facilities | Members | Selected Publications | News | NEW Openings Available

Selected Publications

I. Energy Storage Materials for Lithium Ion Batteries

  1. X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. T. Picraux, S. Zhang, J. Li, T. Zhu, J. Y. Huang, In situ atomic scale imaging of electrochemical lithiation of silicon, Nature Nanotechnology, 7, 749–756 (2012)
  2. X. H. Liu, J. W. Wang, Y. Liu, H. Zheng, A. Kushima, S. Huang, T. Zhu, S. X. Mao, J. Li, S. Zhang, W. Lu, J. M. Tour, J. Y. Huang. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons, Carbon, 50 (2012) 3836–3844, 2012
  3. X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, and J. Y. Huang. In Situ Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures, Advanced Energy Materials, 2, 722–741 2012.
  4. Hui Yang*, et al., Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Letters, 12, 1953–1958, 2012.
  5. X. H. Liu, et al., Anisotropic swelling and fracture of silicon nanowires during lithiation, Nano Letters, 11, 3312-3318, 2011.
  6. L.Q. Zhang, et al., Lithiation-induced embrittlement of multiwalled carbon nanotubes, ACS Nano, 5, 7245–7253, 2011.
  7. Liu X.H. Fan F.F. Yang H., Zhang S. L., Huang J. Y. and Zhu T. Self-limiting lithiation in silicon nanowires. ACS Nano, Accepted.
  8. X. Huang, H. Yang, A. van Duin, and S. Zhang. Self-weakening in Lithiated graphene electrodes. Chemical Physics Letters, in review.
  9. H. Yang, X. Huang, T. Zhu, and S. Zhang. Chemo-mechanics of lithiated Silicon. In review.
  10. S. Huang, F. Fan, X. H. Liu, J. Li, S. Zhang, J. Y. Huang, T. Zhu. Mechanics of lithiation of a nanoparticle. In review, 2012.
  11. X. Huang, H. Yang, A. C. T. van Duin, and S. Zhang. Fracture and embrittlement in lithiated carbon nanotubes. Applied Physics Letters, 2013.
  12. W. T. Liao, H. Yang, Ting Zhu, and S. Zhang. Self-healing of gallium nanoparticles during delithiation, submitted.
  13. W. T. Liang, H. Yang, and S. Zhang. Tough germanium nanoparticle under multicycling. ACS Nano.

II. Biomechanics and Biophysics

  1. H. Y. Yuan, C. J. Huang and S. Zhang, Membrane-mediated inter-domain interactions, BioNanoScience, 1, 97-102, (2011). (Invited)
  2. C. J. Huang, H. Y. Yuan, and S. Zhang. Coupled vesicle morphogenesis and domain organization, Applied Physics Letters, 98,043702 (2011)
  3. H.Y. Yuan and S. Zhang. The interrelated effects of particle size and ligand density on receptor-mediated endocytosis of nanoparticles. Applied Physics Letters, 96, 033704 (2010) (3 pages)
  4. H. Y. Yuan, C. J. Huang and S. Zhang. Virus Inspired Physical Principles for the Nanoparticle Designs. PLoS ONE, e13495. doi:10.1371/journal.pone.0013495, 2010.
  5. H. Y. Yuan, J. Li, G. Bao, and S. Zhang. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Physical Review Letters, 105, 138101 (2010) (4 pages).
  6. H. Y. Yuan, C. J. Huang, and S. Zhang. Dynamic Shape Transformations of fluid vesicles. Soft Matter, 6, 4571–4579 (2010) (11 pages)
  7. H. Y. Yuan, C. J. Huang, G. Lykotrafitis, Ju Li, and S. Zhang. One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Physical Review E, 82, 011905 (2010) (8 pages)
  8. S. Zhang, J. Li, G. Lykotrafitis, G. Bao, and S. Suresh. Size-dependent endocytosis of nanoparticles. Advanced Materials, 21, 419-424 (2009). (6 pages)
  9. J. Zou, W. T. Liang, and S. Zhang. Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes. International Journal of Numerical Methods in Engineering, DOI: 10.1002/nme.2819 (2009). (18 pages)
  10. C. J. Huang, P. Bulter, G. Bao, and S. Zhang. Substrate Stiffness Regulates Cellular Uptake. Nano Letters, 2013.
  11. C. J. Huang, Y. Zhang, H.J. Gao, and S. Zhang. Role of target geometry in endocytosis. Nano Letters, 2013.
  12. C. J. Huang, Y. Zhang, and S. Zhang. A particle-based model for fluid membrane. In review.

III. Mechanics of Carbon Nanotubes and graphene

  1. X. Huang, A. van Duin, K. J. Hsia, Sulin Zhang. Chemomechanics of crack kinking in graphene. Physical Review B, 85, 195453, 2012
  2. X. Huang, and S. Zhang. Morphologies of monolayer grapheme under indentation. Modelling Simul. Mater. Sci. Eng. 19, 054004 (2011).
  3. X. Huang, W. T. Liang, and S. Zhang. Morphology of multi-walled carbon nanotubes depends on interlayer spacing. Nanoscale Research Letters, DOI 10.1007/s11671-010-9801-0 (2010). (6 pages)
  4. S. Zhang, Teng Li, J. Y. Huang, and V. Shenoy, Journal of Nanomaterials, doi:10.1155/2011/518189, Editorial (2011).
  5. X. Huang and S. Zhang. Multiple phase stability of deformed MWCNTs with covalent bridges. Applied Physics Letters, 96, 203106 (2010) (3 pages)
  6. S. T. Sachin, S. Huang, H.Y. Yuan, J. Rencis, Zhu T., and S. Zhang. Nanoscale fracture of graphene. Chemical Physics Letters, 494, 218-222, (2010) (6 pages)
  7. X. Huang, H. Yuan, K. J. Hsia, and S. Zhang. Coordinated buckling of multi-walled carbon nanotubes under uniaxial compression. Nano Research, 3:32-42(2010) (11 pages.
  8. S. Huang, S. Zhang, T. Belytschko, S. Terdalkar, and T. Zhu. Mechanics of nanocracks: fracture, dislocation emission, and amorphization. Journal of the Mechanics and Physics of Solids, 57, 840-850(2009). (11 pages)
  9. X. Huang, J. Zou, and S. Zhang. Bilinear responses and rippling morphologies of multi-walled Carbon nanotubes under torsion. Applied Physics Letters, 93, 031915 (2008). (3 pages)
  10. S. S. Terdalkar, J. Rencis, S. Zhang, and K. J. Hsia. Molecular dynamics simulations of ion-irradiation induced deflection of 2D graphene films. International Journal of Solids and Structures, 45, 3908–3917 (2008). (10 pages)
  11. S. L. Mielke, S. Zhang, R. Khare, R. S. Ruoff, T. Belytschko◊, and G. C. Schatz◊. The effects of extensive pitting on the mechanical properties of carbon nanotubes. Chemical Physics Letters, 446, 128-132 (2007). (5 pages)
  12. S. Zhang and T. Zhu. Atomic geometry and energetics of carbon nanotube necking, Philosophical Magazine Letters, 87, 567-574 (2007). (9 pages)
  13. S. Zhang, R. Khare, T. Belytschko, K. J. Hsia, S. L. Mielke, and G. C. Schatz. Transition states and minimum energy pathways for the collapse of carbon nanotubes. Physical Review B 73, 075423 (2006) (7 pages)
  14. S. L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. P. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko. The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters 390, 413-420 (2004). (8 pages)
  15. S. Zhang, W. K. Liu, and R. S. Ruoff. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Letters 4, 293-297 (2004) (5 pages)
  16. X. Chen, S. Zhang, G. J. Wagner, W. Ding, D. A. Dikin, and R. S. Ruoff. Mechanical resonance and properties of microscale quartz fibers. Journal of Applied Physics 95, 4823-4828 (2004). (6 pages)
  17. X. Chen, S. Zhang, D. Dikin, W. Ding, R. S. Ruoff, L. Pan, and Y. Nakayama. Mechanics of carbon nanocoils. Nano Letters 3, 1299-1304 (2003). (6 pages)
  18. S. Zhang, H. T. Johnson, G. J. Wagner, W. K. Liu, and K. J. Hsia. Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Materialia 51, 5211-5222 (2003). (12 pages)

IV. Multiscale Modeling

  1. X. Huang, H. Y. Yuan, W. T. Liang, and S. Zhang. Mechanical properties and deformation morphologies of covalently bridged multi-walled carbon nanotubes: multiscale modeling. Journal of the Mechanics and Physics of Solids, 58, 1847–1862, (2010) (16 pages)
  2. J. Zou, X. Huang, and S. Zhang. Multiscale coarse-grained simulations of super-thick multi-walled carbon nanotubes under torsion. Journal of Applied Physics, 105, 033516 (2009) (8 pages)
  3. S. Zhang, T. Zhu, and T. Belytschko. Atomistic and multiscale modeling of fracture in crystal lattices. Physical Review B, 76, 094114 (2007). (10 pages)
  4. R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C. Schatz, and T. Belytschko. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B. 75, 075412 (2007). (12 pages)
  5. S. Zhang, R. Khare, Q. Lu, and T. Belytschko. A bridging domain and strain computation method for coupled atomistic-continuum modeling of solids. International Journal for Numerical Methods in Engineering. 70, 913-933 (2007). (21 pages)
  6. S. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko. Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Physical Review B 71, 115403 (2005). (12 pages)
  7. W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park. An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering 193, 1529-1578 (2004). (50 pages)

V. Fracture Mechanics

  1. R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C. Schatz, and T. Belytschko. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B. 75, 075412 (2007). (12 pages)
  2. S. Lu, D. A. Dikin, S. Zhang, F. T. Fisher, J. Lee, and R. S. Ruoff. Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Review of Scientific Instruments 75, 1-9 (2004). (9 pages)
  3. S. Zhang, T. Zhu, and T. Belytschko. Atomistic and multiscale modeling of fracture in crystal lattices. Physical Review B, 76, 094114 (2007). (10 pages)
  4. S. Zhang, G. J. Wagner, S. N. Medyanik, Y. H. Yu, W. K. Liu, and Y.W. Chung. Experimental and molecular dynamics studies of friction between nano-scale carbon coatings. Surface and Coating Technology 177, 518-523 (2004). (6 pages)
  5. S. Zhang, R. Panat, and K. J. Hsia. Influence of surface morphology on the adhesion strength of aluminum/epoxy interface. Journal of Adhesion Science and Technology 17, 1685-1711 (2003). (27 pages)
  6. R. Panat, S. Zhang, and K. J. Hsia. Bond coat surface rumpling in thermal barrier coatings. Acta Materialia 51, 239-249 (2003). (11 pages)
  7. H. Saif, S. Zhang, A. Haque, and K. J. Hsia. Effects of native oxide on the elastic response of nanoscale aluminum films. Acta Materialia, 50, 2779-2886 (2002). (8 pages)
  8. S. Zhang, K. J. Hsia, and A. J. Pearlstein. Potential flow model of cavitation-induced interfacial fracture in a confined, ductile layer. Journal of the Mechanics and Physics of Solids 50, 549-570 (2002). (12 pages)
  9. S. Zhang and K. J. Hsia. Modeling the fracture of a sandwich structure due to cavitation in a ductile adhesive layer. Journal of Applied Mechanics 68, 93-100 (2001). (8 pages)
  10. S. Zhang, T. Li, and W. Yang. Statistical strength of brittle materials with strongly interacting collinear microcracks. International Journal of Solids and Structures 35, 995-1008 (1998). (14 pages)
  11. S. Zhang and W. Yang. Macrocrack extension by connecting statistically distributed microcracks. International Journal of Fracture 90, 341-353 (1998). (13 pages)
research/suz10/selected_publications.txt · Last modified: 2013/08/30 17:57 by suz10

 
Recent changes RSS feed Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki Edit