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Abstract
We employ a quasi-continuum method to characterize the deformation
morphologies of monolayer graphene under indentation. The method involves
casting the atomistic interaction potentials into the constitutive relations at
the continuum level, thereby facilitating large-scale simulations with atomistic
fidelity. Our simulations mapped out different morphological phases under
indentation, depending on the indentation depth, the graphene–substrate
adhesion strength and the graphene size. We carefully characterized the rippling
phase and found that the wave number of the periodic rippling is dependent on
the graphene–substrate adhesion strength and the graphene size, but not on
the indentation depth. The simulation results provide new insights into the
structural instability of graphene.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene, a monolayer of carbon atoms, exhibits many novel properties including the
surprisingly high room-temperature electron mobility [1]. Owing to its large ratio of in-plane
rigidity to bending rigidity [2], monolayer graphene is prone to deformation into the third
dimension, featuring local sharp folds. Examples range from buckling of singled and multi-
walled carbon nanotubes (CNTs) under compression [3, 4], torsion [5, 6] and bending [4, 7–12];
edge-stress induced graphene warping [13, 14], etc. Previous experimental studies have found
that the mechanical deformation morphologies significantly influence the electronic properties
of graphene [15–17], which has motivated extensive studies of morphological patterns of
graphene under thermal and mechanical loadings [18–20].
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Nanoindentation has been widely used to probe the materials properties of graphene
sheets, including Young’s modulus and tribological properties [2, 21]. In the settings of the
experiment of Lee et al [2], monolayer graphene was carefully deposited on a substrate with
periodically arranged holes of radius on the order of micrometers. Indentation at the center
of the hole probes the elastic modulus and fracture strength of the graphene. Both atomistic
and continuum models were used to interpret the experiment results. Yet both types of models
suffer limitations. Continuum models [20, 22] with phenomenological constitutive relations
fail to capture the intrinsic nonlinearity and finite-strain anisotropy of graphene, while the fully
atomistic simulations [20] are computationally very demanding and thus inaccessible to the
length scale in the experiment settings.

In this paper, we develop a quasi-continuum method to study the deformation
morphologies of monolayer graphene under indentation. Compared with fully atomistic
models, our simulation method dramatically reduces the computational cost and thus can
access phenomena at a much larger scale, therefore facilitating the study of size-dependent
deformation morphology of graphene. Our simulation method also has advantageous
over continuum models since the constitutive relations in our quasi-continuum model are
analytically casted from the interatomic interaction potentials. Using the quasi-continuum
method, we show that monolayer graphene under indentation exhibits evolving morphologies,
ranging from uniform deformation, wave-like rippling, to local shape buckling or fracture,
depending on the substrate–graphene adhesion strength and the graphene size. Our detailed
analysis of the rippling phase shows that the wave number of the rippling also scales with the
substrate–graphene adhesion strength and the graphene size. These numerical observations
are rationalized through energetics analysis.

The paper is organized as follows. In section 2, we will introduce the quasi-continuum
method. In section 3, we will present the mechanical properties, the deformation morphologies
and energetics of graphene under indentation. Discussions and conclusions are provided in
section 4.

2. Methodology

We adopt the second-generation Brenner potential [23] to describe the C–C covalent
interactions in the monolayer graphene, which takes the following form:

VTB =
∑

i

∑

j>i

[
V R(rij ) − Bij (r)V A(rij )

]
, (1)

where rij is the distance between atoms i and j , V R and V A are the pairwise repulsive and
attractive interactions, respectively, Bij is the bond-order function that has a complicated
dependence on the bond angles and bond lengths involving atoms i and j .

The nonbonding van der Waals (vdW) potential consists of two components: interactions
between carbon atoms within the monolayer graphene and between the carbon atoms and the
substrate. The former needs to be included when self-contact deformation modes such as
rippling and buckling present. The vdW interaction between two carbon atoms is described
by the Lennard-Jones (LJ) potential [24] as

VGG(r) = ∈
r6

0

[
1
2
κ6

( r0

r

)12
−

( r0

r

)6
]

, (2)

where r is the interatomic distance, κ = 2.7 is a dimensionless constant, r0 = 1.42 Å is the
equilibrium bond length and ∈= 15.2 eV Å6 . The vdW interaction between the carbon atoms

2



Modelling Simul. Mater. Sci. Eng. 19 (2011) 054004 X Huang and S Zhang

in the graphene sheet and in the substrate can be also described by a generic LJ potential:

VGS(r) =∈′
[( r0

r

)12
−

( r0

r

)6
]

. (3)

Given the atom density of the substrate ρ, one can determine the interaction potential between
a single carbon atom in the graphene and the substrate. Treating the substrate as an infinite
surface with a hole, one has

ṼGS(h; rc; R) =
∈′ ρπr2

0

2

[
2
5

( r0

h

)12
−

( r0

h

)6
]

−
∫

$C

VGS(r) d$, (4)

where h is the vertical distance between the atom and the substrate, rc is the distance between
the carbon atom and the center of the hole, R is the radius of the hole and $C is the surface
region of the hole. The first term in the right-hand side of equation (4) is the interaction
potential between a carbon atom and an infinite surface; the second term takes into account
of the presence of the hole. One also follows that the graphene–substrate adhesion strength
(energy per unit area) is γ = (ρπr2

0 /2S0) ∈′, where S0 = (3
√

3/2)||A||2 is the area of the
unit cell in the graphene lattice, A is the lattice constant of the graphene in the undeformed
configuration. We choose r0 = 3.4 Å as the equilibrium distance between the carbon atom
and infinitely large substrate, the same as the equilibrium gap between two graphene sheets.

We next analytically cast the atomistic interaction potentials into the continuum level
constitutive relations. For the in-plane deformation energy of the monolayer graphene, the finite
crystal elasticity theory of Arroyo and Belytschko [25, 26] links the kinematic descriptions on
the atomic and continuum levels via the exponential Cauchy–Born hypothesis,

a = ζ(A), (5)

where ζ is an exponential map that transforms the undeformed lattice vector A into a deformed
one a. Through a local approximation of the exponential map, the deformed lattice vectors
and the angles between two lattice vectors can be analytically represented in terms of the
continuum deformation measures, i.e. C and K, the stretch and curvature tensors, respectively.
Considering a representative unit cell of area S0 in the graphene lattice, the kinematic link
allows analytically determining the hyperelastic strain energy from the underlying interatomic
potentials as

W = W(C; K) = W [a(C; K);α(C; K)], (6)

where a and α represent generic lattice vectors and angles between lattice vectors, respectively.
The continuum representation of the covalent binding energy for the graphene subject to the
deformation map φ that maps from the undeformed to deformed configurations is

EG =
∫

$0

W {C[φ(X)]; K[φ(X)]} d$0, (7)

where X is a material point in the undeformed configuration and $0 is the surface area of the
graphene.

Homogenization of the discrete nonbonding energy between two unit cells of the graphene
lattice gives rise to the vdW energy density:

V̂GG(r) =
(

2
S0

)2

VGG(r), (8)

where r is the distance between two material points in the graphene. Note that the factor of
two on the right-hand side of equation (8) comes from the fact that each unit cell contains
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two nuclei. The continuum form of the nonbonding energy EGG is a double integral over the
graphene surface:

EGG = 1
2

∫

$0X

∫

$0Y

V̂GG[||φ(X) − φ(X′)||] d$0X d$0Y , (9)

where X and Y are the two material points in the monolayer graphene. Note that in computing
the self-contacting vdW interaction energy, two cutoff radii are used. The lower cutoff radius
excludes the covalent interaction region (∼2.0 Å), while the upper cutoff radius is typically
taken to be 1.0 nm.

Homogenization of the discrete graphene–substrate vdW energy gives rise to the vdW
energy density as

V̂GS(h; rC; R) =
(

2
S0

)
ṼGS(h; rC; R). (10)

The nonbonded energy between the graphene and substrate is then

EGS =
∫

$0

V̂GS [h(φ(X)); rC(φ(X)); R] d$0. (11)

Note that h and rC are both determined by the position of the material point φ(X) in the
deformed configuration.

The total energy of the system is

Etotal = EG + EGG + EGS. (12)

Based on the coarse-grained constitutive relations for both the bonding and nonbonding
interactions, the graphene is discretized by finite elements. The model with the first two energy
terms has been extensively tested [3–5, 7, 9, 11, 25, 26] and demonstrated its atomic accuracy.
In addition, the computational efficiency is improved by about two orders of magnitude as
compared with its atomistic counterpart. It should be pointed out that the quasi-continuum
method described here is incapable of studying the deformation of defected CNTs, which has
been a topic of active research for the last decade [27–35].

3. Results and discussion

This section presents the simulation results on the deformation morphologies and energetics of
monolayer graphene under indentation. Our numerical setting involves a square graphene sheet
adhered on the substrate with a circular hole. The circular hole and the graphene are centered.
The diameters of the circular holes are chosen to be 100, 200, 300 400 and 500 nm, 80% of
the corresponding side lengths of the graphene sheets. To begin with, the graphene is fully
relaxed free of any constraints using the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [36]. A rigid indenter is then moved downward incrementally to indent the
graphene, followed by a geometry optimization to the local energy minimum configuration
at each step. The radius of the indenter RI is chosen to be 1% of that of the substrate hole.
The interaction between the indenter and the graphene is modeled by an external repulsive
potential as

Vext(r) = AH(RI − r)(RI − r)3, (13)

where A is a force constant and H(RI −r) is the step function. We set A = 6.25×103 eV Å−3.
The deformation morphology, the energy distribution and the applied indentation force are
computed at each loading step.

Figures 1(a)–(c) show the deformation morphologies of the square graphene of side length
of 125 nm under indentation. The graphene–substrate adhesion strength is 1.6 eV nm−2.
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Figure 1. Deformation morphologies of an indented graphene of side length of 125 nm (hole
diameter: 100 nm). (a)–(c) Deformation morphologies of graphene with graphene–substrate
adhesion strength of 1.6 eV nm−2. From (a) to (c), the indentation depths are 2 nm, 5 nm and
18 nm, respectively. (d)–(f ) Deformation morphologies of graphene with graphene–substrate
adhesion strength of 0.4 eV nm−2. From (d) to (f ), the indentation depths are 2 nm, 5 nm and
15 nm, respectively.

At small indentation depth (d = 2 nm), the graphene deforms uniformly, as shown in
figure 1(a). With increasing indentation depth, periodic rippling develops (figures 1(b) and (c)).
The rippling modifies the otherwise compressive mode into the out-of-plane bending mode,
since the latter is energetically more favorable. The rippling diminishes close to the center
of the graphene, indicating that the graphene in the center region undergoes biaxial stretch.
At the same time, small secondary rippling appears at the edge of the circular hole. Upon
rippling, the graphene–substrate separation near the edges of the hole increases, giving rise
to larger substrate–graphene vdW energy. Therefore, rippling is penalized by the graphene–
substrate decohesion energy. Fracture of the graphene occurs at the indentation depth of 19 nm,
suggested by failing in obtaining a local energy minimum. The deformation morphologies of
graphene with adhesion strength of 0.4 eV nm−2 are shown in figures 1(d)–(f ). Different from
the morphology evolution of graphene with high adhesion strength, beyond periodic rippling
phase, graphene with low adhesion strength buckles locally without fracture.

Under indentation, the graphene tends to flow radially toward the center of the hole,
creating excessive surface area of the highly stretched region and thereby releasing the in-
plane stretching energy. The deformation morphology of the graphene depends on the amount
of the flow-in displacement δ of the graphene into the center of the hole. Figure 2 plots
the flow-in displacement of the graphene of 125 nm in size length. Due to the geometrical
asymmetry in the radial direction, the flow-in displacement is nonuniform, and is larger at the
central region of the side than at the corner region, as shown in figure 2(a). Figure 2(b) plots
the flow-in displacement at the central region of the graphene side as a function of indentation
depth at different graphene–substrate adhesion strength. For all the adhesion strengths, the
flow-in displacement homogeneously increases at the initial stage of indentation. During this
stage, the deformation morphology evolves from uniform deformation phase to rippling phase.
The smooth transition indicates the energetic closeness of these two deformation phases. At a
critical indentation depth, the flow-in displacement jumps sharply, indicating the occurrence
of buckling. With increasing graphene–substrate adhesion strength, the critical indentation
depth increases monotonically, as observed from figure 2(b).

Figure 3(a) shows the rippling amplitude of graphene at the radial coordinate r =
33.33 nm. The side length of the graphene is 125 nm, and the graphene–substrate adhesion
strength is 0.4 eV nm−2. At the indentation depth of d = 3 nm, the rippling amplitude is nearly
zero (blue line in figure 3(a)), indicating the absence of rippling. The rippling amplitude
is ∼0.1 nm at the indentation depth of 6 nm. With further increasing indentation depth, the
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Figure 2. The flow-in displacement of the graphene of 125 nm in size length. (a) The nonuniformity
of the flow-in displacement; (b) The flow-in displacement at different indentation depths.

Figure 3. (a) Rippling amplitudes at r= 33.33 nm of graphene adhered to the substrate with the
hole of 100 nm diameter. (b) Wave number of the rippled graphene at different adhesion strengths.

rippling amplitude increases. For example, the rippling amplitude is ∼0.3 nm at the indentation
depth of 9 nm. However, the wave number of graphene under indentation is nearly independent
of the indentation depth. Here, the wave number is determined based on the primary rippling,
not on the secondary rippling near the edge of the hole. Figure 3(a) clearly shows that the
rippling is indeed nearly periodic. Figure 3(b) shows that the wave number of the periodic
rippling nearly linearly scales with the graphene–substrate adhesion strength. The red straight
line in the figure is the linear fitting of the data points. The increase of the wave number with the
adhesion strength can be understood from the relative significance of the graphene–substrate
adhesion energy and the deformation energy of the graphene. At larger adhesion strength, the
amount of flow-in graphene area is smaller due to the higher graphene–substrate decohesion
energy. The deformation morphology under this condition prefers smaller rippling amplitudes,
giving rise to a larger wave number.

Figures 4(a)–(d) display the energy density distribution of the graphene at different
indentation depths. In the initial configuration of the graphene (figure 4(a)), the surrounding
region adhering to the substrate has a lower energy density than the suspended region. As the
indenter moves down, the high energy density region (red region) expands radially from the
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Figure 4. (a)–(d) Energy density distribution of graphene of side length of 125 nm (red for
higher energy state and blue for lower). The adhesion strength is 0.4 eV nm−2. From (a) to (d),
the indentation depths are 0, 5, 10 and 15 nm, respectively. (e) Energetics of graphene under
indentation (energy bar unit eV nm−2).

center, as shown in figures 4(b) and (c). The high energy density region around the indenter
is caused by the large local elastic stretch. We also observed that the graphene deforms
appreciably at the center of the four edges that adhere to the substrate as the indentation depth
increases (light blue region in figure 4(c)). However, the corner regions of the graphene remain
nearly perfectly adhered to the substrate. Figure 4(d) shows the energy density distribution
of the buckled configuration. The local buckling releases the energy not only in the central
region around the indenter but also at the edges of the graphene. As a result, the energy
distribution over the suspended region of the graphene is more uniform. Figure 4(e) plots
the energy variations at different indentation depths, where the bonding energy is comprised
of in-plane stretching energy and out-of-plane bending energy. From an energetics point of
view, the transition from the uniform deformation phase to rippling phase is indeed smooth,
consistent with conclusion from the flow-in displacement. It is clearly seen that after buckling,
the bonding energy decreases while the nonbonding vdW energy increases, both sharply. The
total system energy decreases after buckling due to the relaxation of the stretched deformation.

Figure 5 plots the morphological phase diagram of the graphene under indentation, where
the regimes of the uniformly deformed (I), rippling (II), buckling (III) and fracture (IV) phases
are indicated in the space of the indentation depth and graphene–substrate adhesion strength.
It is found that when the adhesion strength is smaller than 1.5 eV nm−2, the deformation
morphology evolves from the uniform pattern to the rippling and finally to the buckling pattern
with increasing indentation depth. The critical indentation depth at the onset of instability for
these three patterns increases with increasing adhesion strength. When the adhesion strength
approaches 1.5 eV nm−2, the fracture phase replaces the buckling phase in the diagram. It
should be noted that the maximum adhesion strength used in this study is 1.6 eV nm−2, which
is the adhesion strength between two graphene sheets. For the adhesion strength larger than
1.6 eV nm−2, it is expected that the morphological evolution will follow the path from the
uniformly deformed pattern to the fracture pattern.

Figures 6(a)–(d) show the deformation morphologies of graphene of different sizes under
indentation. The side lengths of the graphene from (a) to (d) are 125 nm, 250 nm, 375 nm, and
500 nm, respectively. The graphene–substrate adhesion strength is 0.8 eV nm−2. The rippling
patterns in these different sized graphene sheets are similar, and the rippling wave number
increases nearly linearly with the graphene size, as shown in figure 6(e).

4. Conclusions

In conclusion, our large-scale quasi-continuum simulations observed multiple morphological
deformation phases in indented monolayer graphene, depending on the indentation depth
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Figure 5. Morphological phase diagram of graphene under indentation. I: uniformly deformed
phase; II: rippling phase; III: buckling phase; IV: fracture phase.

Figure 6. (a)-(d) Deformation morphologies of graphene under indentation. From (a) to (d),
the side lengths of the graphene are 125 nm, 250 nm, 375 nm and 500 nm, respectively; the diameter
of the hole is 80% of the side length. (e) The wave number of graphene scales with the side length.

and the substrate–graphene adhesion strength. Our energetics analysis suggests that the
morphological phase transition at different loading regimes is a result of interplay of the in-plane
deformation energy and graphene–substrate decohesion energy. The rippling wave number
of the indented graphene linearly scales with the adhesion strength and the graphene size.
This simple scaling law calls for theoretical analysis of the energetics of indented graphene.
The multiple morphological phases alter the electronic-magnetic properties. The indented
graphene thus can be used as a general experimental setting for the study of mechanical–
electronic coupling.
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