\qquad

Problem Set 9
 Due March 25, 1999

Professors Gray \& Costanzo

Problem 1

For the mechanism shown on the right, point A has a constant linear velocity of $2 \mathrm{~m} / \mathrm{s}$ down at the instant shown, and the bar $A B$ makes an angle of 30° with the horizontal. Determine the angular velocity and acceleration of the rod, and determine the velocity and acceleration of point B.

Problem 2

The mechanism shown on the right consists of a crank, connecting rod, and piston from an internal combustion engine. You are given that the crank is rotating with angular velocity ω and angular acceleration α. Given that the length of crank $A B$ is r and that the length of connecting $\operatorname{rod} B C$ is L, determine the velocity and acceleration of the piston C as a function of the crank angle θ. Note: your answers should be a function of r, L, θ, ω, and α.

