\qquad
\qquad
\qquad

Problem Set 8
 Due March 18, 1999

Problem 1

The 2 kg ball is thrown so that it is traveling horizontally at $10 \mathrm{~m} / \mathrm{s}$ when it strikes the 6 kg block as it is traveling down the inclined plane at $1 \mathrm{~m} / \mathrm{s}$. If the coefficient of restitution between the ball and the block is $e=0.6$, determine the speeds of the ball and the block just after the impact. In addition, what distance does B slide up the plane before it stops? The coefficient of kinetic friction between the block and the plane is $\mu_{k}=0.4$.

Problem 2

The 5 lb box B is dropped from rest 5 ft above the top of the 10 lb plate P, which is supported by the spring having a stiffness of $k=30 \mathrm{lb} / \mathrm{ft}$. If $e=0.6$ between the box and plate, determine the maximum compression imparted to the spring. Neglect the mass of the spring.

Problem 3

The two billiard balls A and B are originally in contact with one another when a third ball C strikes each of them at the same time as shown. If ball C remains at rest after the collision, determine the coefficient of restitution. All the balls have the same mass. Neglect the size of each ball.

