\qquad
\qquad
\qquad

Problem Set 7
 Due March 4, 1999

Problem 1

Two indentical masses are connected by a rigid bar of negligible mass, rotate in a vertical plane, and are pinned as shown. In addition, there is damping moment of the form $-c \omega \mathrm{~N} \cdot \mathrm{~m}$ generated at the pin, where ω is the angular velocity of the bar. If the system is released from rest in a horizontal position, determine the angular equation of motion, along with all appropriate
 initial conditions, using angular momentum techniques.

Problem 2

A box having a weight of 8 lb is moving around a circle of radius $r_{A}=2 \mathrm{ft}$ with a speed of $\left(v_{A}\right)_{1}=$ $5 \mathrm{ft} / \mathrm{s}$ while connected to the end of a rope. If the rope is pulled inward with a constant speed of $v_{r}=4 \mathrm{ft} / \mathrm{s}$, determine the speed of the box at the instant $r_{B}=1 \mathrm{ft}$. How much work is done by pulling in the rope from A to B ? Neglect friction and the size of the box.

Problem 3

A car C having a mass of 1000 kg is tied to a van V having a mass of 1750 kg so that it can tow it to the junk yard. If the cable connecting the two is elastic with a stiffness of $75 \mathrm{kN} / \mathrm{m}$, determine the maximum stretch in the cable during the initial part of the tow. Originally, both the car and the van are coasting in the same direction with speeds $\left(v_{C}\right)_{1}=15 \mathrm{~km} / \mathrm{h}$ and $\left(v_{V}\right)_{1}=10 \mathrm{~km} / \mathrm{h}$, respectively. Neglect friction and rolling resistance and assume that neither car brakes or accelerates for the duration of the motion.

