\qquad
\qquad

Problem Set 5

Due February 18, 1999

Problem 1

The spring-mass system shown is released from rest in the position shown and the mass m slides vertically on the rod.
(a) If the spring has constant k and is unstretched in the position shown, determine the equation for the distance through which the mass falls before first coming to a stop. Assume that μ_{k} is the coefficient of kinetic friction between the mass and the rod.
(b) After obtaining the equation in part (a), let $m=2 \mathrm{~kg}, l=$
 $0.3 \mathrm{~m}, k=300 \mathrm{~N} / \mathrm{m}$, and $\mu_{k}=0.2$ and use Mathematica to numerically find this distance. Finally, determine the minimum value of the coefficient of static friction μ_{s} so that the mass will not start to move back up after coming to a stop.

Problem 2

The spring with constant $k=20 \mathrm{lb} / \mathrm{ft}$ is connected to the floor and to the 200 lb collar A. Collar A is at rest, supported by the spring, when the 300 lb box B is released from rest in the position shown. What are the velocities of the collar and box when the box B has fallen 2 ft ?

