\qquad

Mathematica Problem Set
 Problem Set 1
 Due January 22, 1999 by 5:00 p.m.

Problem 1

Begin define the following two equations in Mathematica:

$$
\begin{align*}
2 p+g-q^{2} & =3 \sin \left(\frac{\omega t}{2}\right) \tag{1}\\
p-4 g+13 q^{2} & =20 \cos (3 \omega t) \tag{2}
\end{align*}
$$

After doing so, solve these two equations for p and q. Once you have obtained the solution, create a list of replacement rules for the parameters called plist in which you define g to be 9.81 and ω to be 5 . Finally, use the solution you have obtained and the list of replacement rules to plot the solutions for p and q versus time, t, for $0<t<5$.

Problem 2

Define the following second-order differential equation in Mathematica:

$$
\begin{equation*}
\ddot{x}+\gamma \dot{x}-x+\beta x^{3}=A \sin (\omega t) \tag{3}
\end{equation*}
$$

along with the initial conditions $x(0)=0.5$ and $\dot{x}(0)=0.8$. After doing so, define a list of replacement rules called params that assigns values to the constants in the problem. In that list, let γ be $0.15, \beta$ be 0.5 , and A be 0.3 . Now, solve the differential equations, subject to the initial conditions and the list of constants, ${ }^{1}$ for $x(t)$ for the time interval $0<t<200$. After obtaining the solution (remember, it will be given as an InterpolatingFunction), plot the solution $x(t)$ versus t for the full 200 seconds. In addition, plot the phase space for the system for 200 seconds. That is, do a ParametricPlot of \dot{x} versus x for $0<t<200$.

[^0]
[^0]: ${ }^{1}$ The ordinary differential equation along with the initial conditions is called an initial value problem.

